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Abstract

Nonlinear vector fields have two important types of singularities: the fixed points in phase space and the time singularities
in the complex plane. The first singularities are locally analyzed via normal form theory, whereas the second ones are studied
by the Painlevé analysis. In this paper, normal form theory is used to describe the solutions around their complex-time
singularities. To do so, a transformation mapping the local series around the singularities to the local series around a fixed
point of a new system is introduced. Regular normal form theory is then used in this new system. It is shown that a vector field
has the Painlevé property only if the associated system is locally linearizable around its fixed points, a problem analogous to
the classical problem of the center. Moreover, the connection between partial and complete integrability and the structure of
local series around both types of singularities are established. A new proof of the convergence of the local Psi-series is given
and an explicit method to prove the existence of finite time blow-up manifold in phase space is presented. © 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Painlevé analysis; Normal forms; Singularities; Psi-series; Finite time; Blow-up; Integrability

1. Introduction

In the study of nonlinear vector fields, there are only two types of analyses that can be carried out algorithmically.
The first one, originating in the classical work of Poincaré [1] and Lyapunov [2], is the traditional local analysis
of a vector field around its fixed points, this is done first at the linear level by studying the linearized system and
the associated (linear) eigenvalues and then at the nonlinear level by studying the local normal forms. Much can be
said about the stability or lack thereof of fixed points and the resulting global dynamics. The second analysis is the
analysis of scale invariant solutions which represent the asymptotic behavior of the solution around a complex-time
singularity. Again, it is possible to linearize the system around such solutions and to define the associated eigenvalues
and study the local solutions. Even though its origin can be traced back to Weierstrass, Hoyer and Kovalevskaya
[3,4], this analysis is usually referred to as the Painlevé analysis and it has been primarily used to detect integrable
systems [5,6].

In this work, we develop a normal form theory for the analysis of the solutions around their singularities. To do so,
we transform the original system to a new system, the companion system, whose behavior around the fixed points
controls the behavior of the original system around its singularities. Therefore, the local normal form analysis of
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the new system around the fixed points determines the behavior of the original system around the scale invariant
solutions. Many old and new results can be readily obtained through such an analysis.

First, we show that the so-called Painlevé analysis (à la ARS [5,7]) can be reduced to an analysis of the unstable
manifold of the companion system’s fixed points. A vector field passes the Painlevé test if all its companion systems
unstable manifolds can be analytically linearized.

Second, we show that the Painlevé property (i.e., the general solution is single-valued) actually imposes more
constraints on the solution of a system than the Painlevé test actually provides (a fact already demonstrated in [8]).
We show that a system has the Painlevé property only if all its companion systems can be formally linearized around
their fixed points and all the Kovalevskaya exponents are integers. This requirement is analogous to the constraints
imposed on a planar vector field to possess a center (formal linearizability around a fixed point with imaginary
eigenvalues). We use this analogy to show that there is no finite algorithm to test for the Painlevé property (even
locally).

Third, we investigate the relationship between integrability and normal forms. In order for a system to be com-
pletely integrable (i.e., the existence of (n − 1) first integrals for an n-dimensional vector field), both the original
system and the companion systems must be formally linearizable around each of their fixed points. Moreover, all
the linear eigenvalues and Kovalevskaya exponents must be rational and there must exist at least n− 1 independent
resonance relations for each set of eigenvalues.

Fourth, we show that the local series around the singularities, the so-called Psi-series, are always convergent.
This is a direct consequence of the unstable manifold theorem applied to the companion systems fixed points.

Finally, we exploit the companion system construction to show that real series solutions around the singularities
can be used to build blow-up manifolds for the original system, i.e., each point on these manifolds blow-up in a
finite time.

2. Local analysis around fixed points and normal forms theory

In this section, we briefly recall the basic ingredients of local analysis of vector fields. Consider the system of
differential equations

ẋ ≡ dx
dt

= f(x), x ∈ Cn, (1)

where f is analytic. Assume that this system has k isolated fixed points {x(i), i = 1, . . . , k}. For each fixed point,
say x(i) = x∗, introduce y = x − x∗ and consider the system

ẏ = g(y) = f(y + x∗), y ∈ Cn. (2)

Doing so, we obtain k systems that can be analyzed locally around the origin. For each of these systems, the vector
g can be split into two parts

g = glin + gnli, (3)

where glin and gnli are, respectively, the linear and nonlinear parts of the vector field. The spectrum of the Jacobian
matrix Dg(0) = Dglin defines the linear eigenvalues � = {λ1, . . . , λn} (where the real parts of the λi’s are assumed
to be in increasing order). The fixed point is said to be hyperbolic if R(λi) 
= 0, i = 1, . . . , n.

Locally around the origin, there exists a (formal) local series solutions of the form

y(t) = P(C1 eλ1t , . . . , Cn eλnt ), (4)
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where P is a vector of formal power series in the arguments with polynomial coefficients in t and C1, . . . , Cn are
arbitrary constants. For instance, along the unstable manifold Wu(0), we have (taking Ci = 0 for all i, such that
R(λi) ≤ 0):

y(t) = Pu(Ck eλkt , . . . , Cn eλnt ) =
∞∑

i,|i|=1

ci(t)(Cu)i e(�u
,i)t , (�u, i) =

n∑
j=k

λj ij . (5)

This series describes, locally, the (n− k + 1) parameter solutions on the local unstable manifold. The coefficients
ci(t) are polynomial in t of degree less than or equal to (�u, i). If all ci’s are constant, then the series is referred to
as a pure series (i.e., a pure series in exponentials). If all the coefficients ci are constants for |i| ≤ λn, then they are
constants for all i. The convergence of this series is guaranteed by the unstable manifold theorem [9, p. 103].

Lemma 2.1. Let y = 0 be a fixed point of ẏ = g(y) with linear eigenvalues �. Let �u be the vector of linear
eigenvalues with positive real parts and y(t;Cu) the series (5). Then, there exist K ∈ R, t1 ∈ R, α ∈ R, 0 < α <

R(λu
i ), i = k, . . . , N and δ small enough, such that for |a| < δ, t < t1:

|y(t; a)| < K|a| eαt . (6)

The prefactor K can be explicitly related to the norm of exp(Aut) where Au is the Jordan block associated with the
linear eigenvalues �u.

2.1. Normal forms

To discuss normal forms, it is easier to think of systems of ODEs in terms of vector fields. Let

δ =
n∑

i=1

gi (y)∂yi
(7)

be the vector field associated with system (1) and let � be the vector of linear eigenvalues around the origin. This
vector field can be simplified by a local change of coordinates i.e, one seeks a near-identity transformation θ (in
general, a formal power series), such that

δθ = θ−1δθ (8)

is as simple as possible (this usually means that the new vector field does not contain resonant terms, see below).
The condition that θ be a near-identity transformation ensures that it is invertible and that the new vector field shares
the same linear eigenvalues (the linear component of δ is invariant).

For a generic choice of �, the new vector field δθ can be chosen to be linear and the transformation θ is analytic
(and unique). Three interesting things can happen when such a linearization is not possible (see [10]):

• Resonance. There exists at least one vector of positive integer m (with possibly one mi = −1), such that
(m, �) = 0. Then, in general, there is no formal power series transformation θ that can linearize the vector field
and the simplest form of the new vector field contains only resonant monomials, i.e., it commutes with the linear
part: [δθ , δlin] = 0. Moreover, if the convex hull of � in the complex plane does not contain the origin, then θ is
analytic and δθ is a polynomial vector field [11]. If the linear part is diagonal then a monomial is resonant for the
j th equation if λj = (m, �).

• Quasi-resonance. Let �(m) = (m, �) 
= 0. If there exists an increasing sequence {m(1), m(2), . . . }, such that

�(m(i)) →
i→∞

0, (9)
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fast enough (this is given by a Diophantine condition on the sequence, see [12]), then either the vector field can be
linearized by a divergent series, or analytically transformed to a vector field that contains all the quasi-resonant
monomial terms (i.e., monomial of the form xm(i)

). This situation, of great theoretical interest, can be quite
complex to study (especially since multiple sequences can have such a property) and plays a central role in the
stability analysis of some vector fields.

• Nihilence. There exists at least one first integral I = I (y), i.e., a formal power series, such that

δI = 0. (10)

The existence of a first integral provides additional structure to the series and among others implies the existence
of resonances (see Section 7).

There is a natural relationship between the local series around the fixed point and linearizable vector fields.
Let δ = f(y)∂y be the vector field associated with the system ẏ = g(y). This vector field can be split, in a chart
independent manner, into two parts [13]

δ = δdiag + δnil, (11)

where δnil commutes with δdiag:

[δdiag, δnil] = 0, (12)

and δdiag can be linearized by a formal near-identity transformation

θ−1δdiagθ = δlin, (13)

where δlin is the linearized vector field around the origin. A vector field is linearizable if and only if its nilpotent
component δnil vanishes identically.

Lemma 2.2. The system ẏ = g(y) has pure local series around y = 0 if and only if the vector field δg is formally
linearizable and the linear part δlin is semi-simple.

Proof. First, assume that δ is formally linearizable and that Dg(0) is semi-simple. Without loss of generality, we
write Dg(0) = diag(�). There exists a near-identity formal change of variable y = �(z) that linearizes the system.
In the new variable, the vector field reads: ż = diag(�)z. Hence, we have zi = Ci eλi t for i = 1, . . . , n and the
substitution of this solution in the series y = �(z) defines a pure series.

Second, assume that the system ẏ = g(y) has pure local series and, without loss of generality, that the Jacobian
matrix Dg(0) is in Jordan normal form. If the Jordan normal form is not diagonal, then the first term of the
local series contains polynomials in t [14]. Indeed, the first terms of these series are the series solutions of the
linearized system. We conclude that Dg(0) is diagonal and δlin is semi-simple. Now, consider the pure series
y = P(C1 eλ1t , . . . , Cn eλnt ), where P is a formal power series in its arguments with constant coefficients. Since
Dg(0) is diagonal, P is of the form P(·) = Id(·)+Q(·), where Id(·) is the identity and Q(·) a formal power series
with no linear terms. Now, let zi = Ci eλi t for all i and consider the change of variable y = P(z). This transformation
is invertible since P is a near-identity transformation. It is also a formal change of variable that linearizes the vector
field δ. �

One can also realize that if δnil is not identically zero, then the normal form in the variables z is not linear and
at least one equation, say z1, has at least one monomial resonant term ż1 = λ1z1 + zm + h.o.t., where m is such
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that (�, m) = 0. The local series of this equation contains polynomial terms in t and so does the local series in the
original variables.

Hence, the absence of resonant terms in the normal forms implies that the local solution can be expressed only
in terms of exponentials (a pure solution). Conversely, the presence of resonant terms (or a non-semi-simple linear
part) implies that the coefficients of the local solutions are polynomial in t . This observation is well known in
physics where the presence of the so-called “secular terms” (polynomials in t) in the center manifold dynamics is
known to be associated with resonances between linear eigenvalues. Note that the existence of resonance amongst
the eigenvalues is not enough to create secular terms (since δnil may vanish identically), i.e., some vector fields with
resonances can still be linearized.

The normal form analysis can be restricted on the unstable, stable and center manifolds. For instance, con-
sider the unstable manifold and assume that the variables y = (ys, yc, yu) have been chosen, such that Dg(0) =
diag(As, Ac, Au), where Spec(As,c,u) = �s,c,u (the vectors of eigenvalues with negative, zero and positive real
parts). Then, one can find a formal transformation y = �(z), such that the new vector field, in the variables z, reads

δ� = gs(z)∂zs + gc(z)∂zc + gu(z)∂zu . (14)

The restriction of g to the unstable manifold obtained by setting zs = 0 and zc = 0 gives a polynomial vector field
in the variables zu:

δu = gu(zu)∂zu . (15)

Moreover, the restriction of the transformation � to the local unstable manifold given by y = �(zs = 0, zc = 0, zu)

is analytic. If system (15) is linear and Au semi-simple, the solution is zu
i = Ci eλu

i t and the analytic transformation
defines again a convergent pure series.

3. Local analysis around time singularities and Painlevé analysis

Consider again an n-dimensional system of ODEs

dx
dt

= f(x), x ∈ Rn, (16)

where f is analytic. Assume that this system can be split into two parts

f = fup + fdown (17)

in such a manner that:

1. x = �(t − t∗)p is an exact solution 1 of ẋ = fup(x) with � ∈ Cn(|�| 
= 0) and,
2. fdown is such that

fdown(tp)

tp−1
→
t→0

0. (18)

Let 1/q be the smallest integer, such that fdown(tpx) = (tp−1)
∑∞

i=1t
iqf (i)(x).

There is usually more than one solution �(t − t∗)p. We call a balance a pair {�, p} and, by extension, the
corresponding decomposition (17) will be also referred to as a balance. Each balance corresponds to a different type

1 �(t − t∗)p is the vector of components αi(t − t∗)pi .
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of behavior of the solution close to a movable singularity t∗. A solution in phase space can exhibit different types
of behavior as it comes close enough to different fixed points. Similarly, a solution can exhibit different types of
behaviors as it comes close to different movable singularities. In general, the part of the system fup that determines
the balance contains the most nonlinear terms of the vector field.

We assume that there exist k > 0 balances {{�(i), p(i)}, i = 1, . . . , k} and that the vector p(i) is rational. For each
balance, say {�, p}, we introduce the matrix

K = Dfup(�)− diag(p). (19)

The eigenvalues {ρ1, . . . , ρn} = Spec(K) are the Kovalevskaya exponents. We complete the set of Kovalevskaya
exponents by adding the value ρn+1 = q and define � = {ρ1, . . . , ρn, ρn+1}, �̂ = {ρ1, . . . , ρn} (where ρ1 =
−1, ρn+1 = q and �̌ = (ρ2, . . . , ρn) are ordered). The balance is said to be hyperbolic ifR(ρi) 
= 0, i = 1, . . . , n
and it is principal if R(ρi) ≥ 0 ∀ i > 1. By analogy with the linear eigenvalues we define �u to be the vector of
Kovalevskaya exponents with positive real parts.

3.1. Painlevé property and Painlevé tests

Locally around the singularity t∗ corresponding to a balance {�, p}, there exists a (formal) local series solutions
of the form

x(t) = τpP(C1τ
ρ1 , . . . , Cn+1τ

ρn+1), (20)

where τ = t − t∗ and P is a vector of formal power series in the arguments with polynomial coefficients in log τ ,
such that P(0) = �.

A system exhibits the Painlevé property if its general solution is single-valued. This property is therefore a
global property and, in general, no local analysis can answer the question of whether a system exhibits the Painlevé
property (in the particular case of the Painlevé property, local analysis can miss essential singularities, see [15]).
Nevertheless, any global property has local implications. In this case, if a system has the Painlevé property then the
local solutions (even the formal ones) must be single-valued.

If, in the series (20), we consider the positive powers of τ only (i.e., taking Ci = 0 for all i, such thatR(ρi) ≤ 0),
we have

x(t) = τpPu(Ckτ
ρk , . . . , Cn+1τ

ρn+1) = τp


�+

∞∑
i,|i|=1

ci(log τ)(Cu)iτ (�u,i)


 , (�u, i) =

n+1∑
j=k

ρj ij .

(21)

If no logarithmic term appears (i.e., the local series is a pure series), then the series is a Laurent series when all the
positive Kovalevskaya exponents are integers and a Puiseux series if they are rational. It is called a Psi-series if it
is not a Puiseux series (this includes the possibility of having logarithmic terms and/or non-rational Kovalevskaya
exponents). If n − 1 of the Kovalevskaya exponents �̂ are positive, then the series (21) is a local expansion of the
general solution.

A Painlevé test is a procedure providing necessary conditions for the Painlevé property. The simplest such test is
to check that, for each balance, the solution x(t), given by (21) is single-valued, i.e., a Laurent series. This minimal
Painlevé test is the starting point of all Painlevé tests, the one used by Kovalevskaya in the rigid body motion
(without actually checking the absence of logarithmic terms), the ones used by Painlevé and Gambier and the one
rediscovered by Ablowitz et al. [7]. The remarkable property of this minimal test is that it can be checked in a finite
number of steps (by building the series solutions up to the largest Kovalevskaya exponent).
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4. Companion systems

There is an obvious parallel between the analysis of the solutions around fixed points in phase space and the
analysis around the movable singularities (underlined by the analogy between the series solutions (4) and (5), and
(20) and (21)). In more than one way the construction of the series (21) is similar to the construction of the solutions
(5) on the unstable manifold. In order to further develop this analogy, we introduce a change of variables which
transforms the local analysis around the singularities into the local analysis around the fixed point of another system.
Consider a specific balance {�, p} together with the decomposition of the vector field f :

ẋ = fup(x)+ fdown(x), x ∈ Cn (22)

and define the transformation T : (x, t) → (X, s) by

x(t) = τpX(τ ), (23)

τ = es . (24)

The companion system is then

X′
i = Fi(X1, . . . , Xn+1), i = 1, . . . , n, X′

n+1 = qXn+1, i.e., Xn+1 = eqs, (25)

which we write

X′ = F(X1, . . . , XN), X ∈ CN, N = n+ 1. (26)

In general, the embedding n → n+1 is necessary to rewrite the new system as an autonomous vector field. However,
in the particular case where the system is weight-homogeneous (i.e., f = fup), the embedding is not necessary (since
Fi(i = 1, . . . , n) does not depend on Xn+1 and the last equation decouples). A companion system can be defined
for each balance, therefore, there are in general k companion systems associated with a given system. Some of these
systems are actually identical (for balances with equal vectors p but different �). The companion system is, for
real p, a real analytic vector field. However, in the following, we will carry out its analysis around complex fixed
points (whenever � ∈ Cn). The transformation to companion systems is not new, it has been used independently by
different authors [16,17] in the context of the Painlevé analysis but the use of normal form analysis in this context
seems new (even though similar ideas have been presented in [18,19]).

A simple Example. Consider the planar vector field

ẋ1 = x2, (27a)

ẋ2 = 4x3
1 − 2a. (27b)

The possible singular behaviors are: p = (−1,−2) with � = (± 1
2

√
2,∓ 1

2

√
2), i.e., x1 = α1τ

−1, x2 = α2τ
−2 is

an exact solution of ẋ = fup with fup = (x2, 4x3
1)

T and fdown = (0,−2a)T. The first companion transformation is

x1 = τ−1X1, (28a)

x2 = τ−2X2, (28b)

and τ = t − t∗ = es . The new companion system reads

X′
1 = −X2 +X1, (29a)

X′
2 = 4X3

1 + 2X2 − 2X3
3a, (29b)

X′
3 = X3. (29c)
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The second companion transformation x1 = − 1
2

√
2τ−1X1, x2 = 1

2

√
2τ−2X2 leads to the same system (since the

vector p is the same for both balances).

5. Painlevé tests and unstable manifolds

We can now perform a local analysis of the companion system around its fixed points. By construction, there are
at least two fixed points. The first one, X0 = 0, is the origin and the second one is X∗ = (�, 0). Around the origin,
the linear eigenvalues are Spec(DF(0) = {−p, q}, i.e., the eigenvalues are simply given by the exponents of the
singular solution x = �τp together with the exponent q characterizing the non-dominant part of the vector field
fdown.

The second fixed point is more interesting. Indeed, we find Spec(DF(X∗)) = �. The linear eigenvalues of the
fixed point X∗ of the companion system are the Kovalevskaya exponents of the original system around the singular
solution (with the extra eigenvalue q due to the embedding). The unstable manifold of the fixed point X∗ can be
parameterized by

X(s) = Pu(Ck eρks, . . . , CN eρN s) = X∗ +
∞∑

i,|i|=1

ci(s) e(�u,i)s , R(ρi) > 0, i > k − 1, (30)

and N − k + 1 = dim(Wu(X∗)). In terms of the original variables, we have (remember, as τ → 0, s →−∞):

x(t) = τp


�+

∞∑
i,|i|=1

ĉi(log τ)τ (�u,i)


 , �u = (ρk, . . . , ρN), (31)

where ĉi,j = ci,j , j = 1, . . . , n, i.e., the local series on the unstable manifold of the companion system’s fixed point
is the Psi-series of the original system for the balance {�, p}. This series contains as many free arbitrary constants
as the number of positive Kovalevskaya exponents plus the free constant t∗ corresponding to the arbitrary location
of the singularity. Therefore, a solution with n − 1 positive Kovalevskaya exponents is a local expansion of the
general solution.

Every non-zero fixed point of the companion system corresponds to a possible balance {�, p}. Indeed, if X̄ is a
fixed point, then xi(t) = X̄iτ

pi is an asymptotic solution of the original system (i.e., an exact solution of fup). If
X̄ = 0, the corresponding solution is not a balance, but the origin of the original system. However, the converse
is not true and if {�, q} is another balance with q 
= p, then X∗ = (�, 0) is not a fixed point of the companion
system associated with the balance {�, p}. Therefore, one way to analyze locally all possible balances of a given
system is to find all possible decompositions of the vector field f and the corresponding vectors p. To each of these
decompositions corresponds a companion system. The local analysis of all non-vanishing fixed points of these
companion systems provides the local analysis of all possible balances of the original system. In the following, we
consider the behavior of the companion systems around a fixed point X∗.

6. Painlevé property and the problem of the center

The Painlevé property implies that all local series are Laurent series. In particular, the minimal Painlevé test
implies that the local series with ascending powers are all Laurent series. In terms of the dynamics of the companion
system, we have:
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Proposition 6.1. Assume that ẋ = f(x) has the Painlevé property. Then all its companion systems are such that:

1. The linear eigenvalues of X0 and X∗ are integer.
2. The Jacobian matrix of the companion system at X∗ is semi-simple.
3. The unstable manifold of X∗ is analytically linearizable.

Proof. The proof of (1) and (2) follows directly from the identification of the linear eigenvalues at X0 with the
exponents p and the linear eigenvalues at X∗ with the Kovalevskaya exponents. In order for a system to have the
Painlevé property the Kovalevskaya matrix must be semi-simple with integer eigenvalues [8]. A system passes the
minimal Painlevé test if all the local series solutions are Laurent series. In particular, this implies that for each
balance {�, p}, we have p ∈ Zn, q ∈ Z and �̂ ∈ Zn. To prove the rest of the proposition, we restrict the results
of Lemma 2.2 on the unstable manifold. First, we assume that the unstable manifolds of X∗ is linearizable and
let Y = X − X∗. If an unstable manifold is linearizable then it is analytically linearizable (since the eigenvalues
are all in the Poincaré domain). Therefore, there exists an analytic change of variable Y = θu(Zu), such that the
vector field for Zu is linear. If the Jacobian matrix of the companion system at X0 is semi-simple, the solution is
Zu

i = Ci eρu
i s . The substitution of this solution in the analytic transformation Y = θu(Z) defines a (convergent)

pure series, which written in terms of the original variable reads

x(t) = τp


�+

∞∑
i,|i|=1

ciτ
(�u,i)


 . (32)

This series is a Laurent series if p and �u are integers. Hence, the linear eigenvalues of X0 and the positive linear
eigenvalues of X0 are integers. �

The converse is true. If the unstable manifold of X∗ is analytically linearizable, then the local series around the
singularities with ascending powers are Laurent series. Indeed, assume that the system passes the minimal Painlevé
test. Then, the local series around the singularities are all of the form (32) with integers p and �u. This series defines
the local series parameterizing the unstable manifold of the fixed point X∗ for the companion system

X = X∗ +
∞∑

i,|i|=1

ci e(�u,i)s . (33)

By contradiction, the fact that all coefficients ci are constant, implies that the unstable manifold of X∗ is linearizable
and that the Jacobian matrix of the companion system at X0 is semi-simple.

The existence of an analytic change of variables linearizing the dynamics of the companion system on the unstable
manifold implies (i) that the Laurent solutions of the original system with ascending powers are all convergent (a fact
already known from [20,21]) and (ii) that there exist locally around the singular solutions k analytic first integrals
(where k is the number of positive eigenvalues). For a principal balance, this implies that locally around the singular
solution x = �τp, the system is completely analytically integrable (see next section for a converse statement).

The Painlevé property actually imposes much stronger conditions on the local structure of the companion systems’
solutions.

Proposition 6.2. If a system ẋ = f(x) enjoys the Painlevé property then all its companion systems are such that:

1. The linear eigenvalues of X∗ and X0 are integers.
2. The Jacobian matrix of the companion system at X∗ is semi-simple.
3. The companion system is formally linearizable around X∗.
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Proof. Consider the formal solutions around the singularity t∗:

x(t) = τpP(C1τ
ρ1 , . . . , Cn+1τ

ρn+1), (34)

where P is a formal power series in its arguments with coefficients polynomial in log(τ ), i.e.,

x(t) = τp


�+

∞∑
i,|i|=1

ĉiτ
(�,i)


 , (�, i) =

n+1∑
j=1

ρj ij . (35)

As a consequence of Painlevé’s �-method [8], a necessary condition for the Painlevé property is that the formal
solution (35) is a Laurent series, i.e., ĉi is constant for all i. This also implies that both p and �u are integer vectors.
The companion transformation maps (35) to the local series

X = X∗ +
∞∑

i,|i|=1

ci e(�,i)s , (�, i) =
N∑

j=1

ρj ij . (36)

The condition for the Painlevé property is that X(s) is a pure series. Lemma 2.2, in turn, implies that the companion
system is formally linearizable and that the Jacobian matrix of the system at X∗ is semi-simple. �

In [8], some examples were given of systems satisfying the minimal Painlevé test but failing to have the Painlevé
property (see next example). In the context of the companion systems, these examples have nonlinear normal
forms. The nonlinear monomials, however, correspond to resonances between negative and positive eigenvalues
or between negative resonances. The minimal Painlevé test only consider monomial corresponding to resonances
between positive eigenvalues.

The last proposition implies that every companion system is formally linearizable around all its fixed points
(except maybe at the origin). Moreover, since −1 is always a linear eigenvalue of X∗, all the fixed points but the
origin have resonant eigenvalues. Therefore, the problem of proving the Painlevé property is equivalent to proving
that the companion systems can be formally linearized around a resonant fixed point.

In terms of normal forms, let ∆ = F(Y)∂Y, Y = X−X∗ be the vector field of the companion system. As explained
before, we split this vector field into two parts: ∆ = ∆diag +∆nil, where [∆diag,∆nil] = 0 and θ−1∆diagθ = ∆lin.
The Painlevé property implies that for each companion system

∆nil = 0, ρi, pi ∈ Z ∀i. (37)

6.1. A digression: the problem of the center

The problem of proving the Painlevé property of a given analytic vector field has a classical analogue in the theory
of dynamical systems: the problem of the center. Consider a planar vector field δ = f(x)∂x field with imaginary
(±i) eigenvalues at 0:

ẋ1 = x2 + f1(x1, x2), (38a)

ẋ2 = −x1 + f2(x1, x2). (38b)

The problem of the center consists, for a given f , in proving the existence of a center at the origin, i.e., the origin is a
fixed point surrounded by an open sets of periodic orbits. To do so, one looks for a near-identity change of variables
that removes all the nonlinear terms, i.e., δ has a center at 0 if and only if it can be formally linearized around 0:

θ−1δθ = δlin, (39)
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which, equivalently implies δnil = 0. Moreover, there exists a formal (power series) first integral (provided by θ ).
The main difficulty in the problem of the center resides in proving the existence of a formal linearizing power series.
Indeed, there is no a priori bound on the degree of nonlinear resonant terms, i.e., if we can linearize the system up
to degree N (i.e., if all monomial terms of degree less than or equal to N can be removed by polynomial changes
of variables), there is no guarantee that the degree N + 1 can also be linearized. Hence, in general, proving that
a fixed point is a center is not a finite decision procedure. Conversely, proving that a fixed point is not a center is
a finite decision procedure (it is enough to show that some monomials of degree N cannot be removed by formal
power series change of variables) but the number of steps is not known.

This analogy shows that the Painlevé property cannot be, in general, fully tested by local analysis only. Indeed
there is no general finite algorithmic decision procedure to check that ∆nil = 0.

6.2. An algorithm and an example

Based on the last proposition, necessary conditions for the Painlevé property can be obtained by computing the
normal forms of the companion system around X∗.

An algorithm for the Painlevé property (necessary conditions):

1. Find all possible balances {�, p}. Check that p ∈ Zn for all balances.
2. For each vector p, apply the companion transformation x → τpX, Xn+1 = τq and τ → es to obtain the

companion system: X′ = F(X).
3. For each companion system check that every non-zero fixed point has integer linear eigenvalues and is formally

linearizable, i.e., show that the local normal forms are linear.

The advantage of this algorithm is that it relies on the computation of normal forms, a subject of considerable stud-
ies in computer algebra. There are to date many general results and various excellent algorithms for the computation
of normal forms [11,12,22–24].

An example. Consider the fourth-order equation

d4x

dt4
− x

d3x

dt3
+ 2

dx

dt

d2x

dt2
= 0. (40)

The corresponding system with x = (x, ẋ, ẍ,˙ẍ) is

ẋ1 = x2, (41a)

ẋ2 = x3, (41b)

ẋ3 = x4, (41c)

ẋ4 = −x1x4 + 2x3x2. (41d)

It is a weight-homogeneous vector field (i.e., fup = f) with exponents p = (−1,−2,−3,−4). There is a unique
balance given by � = (−12, 12,−24, 72) and the Kovalevskaya exponents are � = {−1,−2,−3, 4}. The minimal
Painlevé test is trivially satisfied since there is a unique positive Kovalevskaya exponent. Similarly, there exists
Laurent series with descending powers. However, this system does not have the Painlevé property. To see that, we
apply the algorithm: first apply the companion transformation with p = (−1,−2,−3,−4) to obtain

X′
1 = X1 +X2, (42a)

X′
2 = 2X2 +X3, (42b)
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X′
3 = 3X3 +X4, (42c)

X′
4 = 4X4 +X1X4 + 2X3X2. (42d)

As expected, the linear eigenvalues around X∗ = (−12, 12,−24, 72) are � = (−1,−2,−3, 4). The unstable
manifold of this fixed point is analytically linearizable (since there is only one positive eigenvalue). The stable
manifold is characterized by the three negative eigenvalues.

The resonance condition ρi = m1ρ1+m2ρ2+m3ρ3 leads to three possibilities: i = 2 and m2 = 1,m1 = m3 = 0;
i = 3 and m1 = 1,m2 = 1,m3 = 0 or m1 = 3,m2 = m3 = 0. Therefore, in order to check that the stable manifold
is linearizable one has to compute the normal form to order 4. The normal form is obtained by first translating the fixed
point to the origin, second diagonalizing the linear part and third applying a series of near identity transformations.
To fourth order, the normal form reads

Y ′1 = −Y1 + 36Y2Y3Y4 + O(Y4), (43a)

Y ′2 = −2Y 2
2 − 60Y 2

3 Y4 + O(Y4), (43b)

Y ′1 = −3Y1 + O(Y4), (43c)

Y ′2 = 4Y4 + O(Y4). (43d)

The dynamics on the unstable manifold is obtained by setting Y1 = Y2 = Y3 = 0 and is obviously linear to order 4
(hence to all order). The dynamics on the stable manifold is obtained, similarly, by setting Y4 = 0 which is again
linear and one concludes that the stable manifold can also be analytically linearized. In terms of the original system,
it means that both local series with ascending and descending powers are Laurent series and the system passes the
minimal Painlevé test. However, the system does not have the Painlevé property since the normal form is not linear.
This implies that the general solution of the original system will exhibit movable logarithmic branch points.

7. First integrals

Consider ẋ = f(x), x ∈ Rn and f analytic. Assume that all nonlinear and linear eigenvalues are simple (i.e., the
Jacobian matrix of the vector field around all fixed points can be diagonalized and so can the Jacobian matrix of all
the companion systems around their fixed points). The function I = I (x) is a formal first integral if I is a formal
power series and δI = 0.

In the following, whenever we evaluate first integrals on a solutions, or assume the existence of multiple formal
first integrals, we assume that there is a non-zero sector connected to the fixed points where all the formal first
integrals and the formal solutions under consideration are defined. This is the case when, for instance, the first
integrals are globally defined.

Theorem 7.1. If a system has k independent formal first integrals I1, . . . , Ik , then:

1. For each fixed point x∗, ∃ k linearly independent positive integer vectors {m(1), . . . , m(k)}, such that

(m(i), �) = 0, i = 1, . . . , k. (44)

2. For each balance {�, p}, ∃ k linearly independent positive integer vectors {m(1), . . . , m(k)}, such that

(m(i), �̌) = di ∈ Q, i = 1, . . . , k. (45)
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Proof. (1) Since Df(0) is semi-simple, we can assume without loss of generality that the linear part of the vector
field is in diagonal form. Consider I1, . . . , Ik , k independent formal first integrals and let J1, . . . , Jk be k other
formal first integrals, polynomial in I1, . . . , Ik chosen, such that

Ji = xm(i) +
∑

n,|n|≥|m(i)|,n 
=m(i)

a(i)
n xn, i = 1, . . . , k, (46)

where {m(1), . . . , m(k)} are linearly independent positive integer vectors. The independence of these vectors is
guaranteed by the linear independence of the first integrals’ gradients. Now, let J = xm +∑

anxn be one of the
first integrals and compute δJ :

δJ = f · ∂xJ, (47a)

δJ = (�, m)xm +
∑

n,n 
=m

bnxn. (47b)

Since δJ = 0, we have (�, m) = 0 and the result follows.
(2) The existence of k independent formal first integrals I1, . . . , Ik for ẋ = f(x) implies the existence of k

independent weight-homogeneous polynomial first integrals J1, . . . , Jk for the weight-homogeneous system ẋ =
fup(x). Now, consider the companion system of ẋ = fup(x) corresponding to the balance {�, p}. This companion
system has a fixed point located at X∗ = (�, 0). Therefore, we apply a linear transformation X − X∗ = MY, such
that, in the variables Y, the companion system is Y′ = F(Y) = diag(�, 1)Y + G(Y), where G(Y) does not have
any linear terms and XN = YN . The fixed point X = X∗ is now Y = 0. Let Ŷ = (Y2, . . . , YN−1), Z = YN and
consider the first integrals J1, . . . , Jk written in terms of the variables Y:

Ji(Y) = Ji(t
p(X∗ +MY)) = Z−di

∑
m


 ∑

0<(p,n)≤di

a(i)
n Ym

1 Ŷn


 , i = 1, . . . , k. (48)

Since Ji is a first integral, we have ∂Y1Ji = 0. Indeed, the first column vector of M is the eigenvector of eigenvalue
ρ = −1. This eigenvector is proportional to fup(X∗). Therefore, ∂Y1Ji is a sum of ∂xJ (X∗)fup(X∗) and higher
derivatives which all vanish identically. As before, we can choose Ĵ1, . . . , Ĵk polynomial in J1, . . . , Jk , such that

Ĵi = Z−di


Ŷm(i) +

∑
n,|n|≥|m(i)|

a(i)
n Ŷn


 , i = 1, . . . , k, (49)

where {m(1), . . . , m(k)} are linearly independent positive integer vectors. The condition δfupJi = 0 then implies
δFĴi = 0, i.e., (m(i), �̌) = di for i = 1, . . . , k. �

As a corollary, we recover a well-known result of the theory of integrability (different versions can be found in
[17,25–29]).

Corollary 7.1. If any set of linear eigenvalues or Kovalevskaya exponents are N -independent, then the system
ẋ = f(x) has no formal first integral.

The same type of result holds for algebraic first integrals. A function I = I (x) is an algebraic first integral if
there exists a polynomial p in (x, I ) with coefficients in C, such that for all solutions x(t) there exists a constant I ,
such that p(x, I ) = 0; i.e., δI (x) = 0. The main difference is that the vectors m are now integers and the condition
on N-independence in the corollary is replaced by a Z-independence condition. The proof is given in [30].
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If the number of independent formal first integrals for an n-dimensional vector field is k = n− 1, the system is
completely integrable. In this case, the local structure of the solutions is further restricted.

Theorem 7.2. Consider a vector field ẋ = f(x). Let x∗ be a fixed point and X∗ the fixed point of the companion
system associated with the balance {�, p ∈ Qn}. If ẋ = f(x) is completely integrable then:
(1) The linear eigenvalues are rationally related (∃λ, such that λi = qiλ qi ∈ Q).
(2) The Kovalevskaya exponents are rational.
(3) δ = f∂x is (formally) linearizable around x∗.
(4) ∆ = F∂X is (formally) linearizable around X∗.

In particular, this theorem implies that the local series around the fixed points (respectively the singularities)
are pure series in exponential of t (respectively in powers of t − t∗), i.e., there is no polynomial in t (respectively
polynomial in log(t − t∗)).

Proof. (1) Since there exist n− 1 first integrals, there exist, from Theorem 2.1, n− 1 linearly independent integer
vectors {m(1), . . . , m(n−1)}, such that (m(i), �) = 0. Hence, ∃λ, such that λi = qiλ, qi ∈ Q, i = 1, . . . , n.

(2) In the second case, the existence of n− 1 linearly independent integer vectors {m(1), . . . , m(n−1)}, such that
(m(i), �̌) = di ∈ Q implies that all the components of �̌ are rational.

(3) Without loss of generality, assume that the system is written in the variables x, such that x∗ = 0 and the linear
part is diagonal. Moreover, assume it has n− 1 first integrals, I1, . . . , In−1. We can evaluate these first integrals on
the general local solutions reordered in powers of t :

x(t) =
∞∑
i=1

...it
i, (50)

where ...i = ...i(C1 eλ1t , . . . , Cn eλnt ) is a power series in its arguments with constant coefficients. Assume, by
contradiction that ...1 
= 0. Then, to second order in t we have

Ii(x) = Ii(...0)+ t∂xIi(...0) ·...1 + O(t2). (51)

Since Ii is constant, this implies

Ii(...0) = Ci, (52a)

∂xIi(...0) ·...1 = 0, i = 1, . . . , n− 1. (52b)

The first integrals Ii are functionally independent, therefore their gradients evaluated on...0 are linearly independent.
Since ...1 
= 0, (52b) implies that ...1 is tangent to the flow, i.e., ...1 = K(t)f(...0). However, since x(t) is a solution
we have .̇..0 +...1 = f(...0). Using ...1 = K(t)f(...0), we have .̇..0 = (1−K)f(...0). This, however, is not possible
since, to lowest order .0,i = Ci eλi t + · · · , which implies K = 0, a contradiction. We conclude that ...1 = 0. The
same argument applies to every order: assume that ...i = 0 for all 0 < i < k, then we find ...k = K(t)f(...0) and
conclude that .̇..0 = (1 − kK(t))f(...0), which in turn implies K(t) = 0. Since the local solutions are pure series,
we conclude from Lemma 2.2 that the fixed point is formally linearizable.

(4) Rather than evaluating the first integrals on the local solutions around the fixed point, we evaluate them on
the local solutions around the singularities [29]

x(τ ) =
∞∑
i=1

...iZ
i, (53)
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where Z = log(τ ). The functions ...i are of the form ...i = �τpPi (Cτp), where Pi (·) are formal power series with
constant coefficients. Assume, by contradiction that ...1 
= 0. Then, to second order in Z we have

Ii(x) = Ii(...0)+ Z∂xIi(...0) ·...1 + O(Z2). (54)

Since Ii is constant, this implies

Ii(...0) = Ci, (55a)

∂xIi(...0) ·...1 = 0, i = 1, . . . , n− 1. (55b)

The same argument as used in Proof (3) then shows that ...i = 0 for all i, i.e., the local solutions are all pure series
and from Lemma 2.2 the companion system is linearizable around all its fixed points. �

8. Convergence of Psi-series

Consider again, ẋ = f(x), x ∈ Rn and f analytic. Assume that the balance {�, p} is hyperbolic and consider the
Psi-series with ascending powers

x(t) = τp


�+

∞∑
|i|=1

ĉi(log τ)τ (�u,i)


 . (56)

We want to prove the convergence of the Psi-series for τ = (t − t∗) and the arbitrary constants Cu = (Ck, . . . , Cn)

small enough. In the case where the Psi-series reduce to Puiseux series (i.e., without logarithmic terms), the conver-
gence of these series has been proven in [20,21]. In the general case, recent general results on singular analysis for
PDEs by Kichenassamy and co-workers [31–33] strongly suggest that that the Psi-series are convergent in general
(see also [34]). This has been successfully demonstrated on many specific examples [35–38] and, in general, for
planar vector fields in [16].

To prove the convergence of the Psi-series, we consider the unstable manifold of X∗ for the corresponding
companion system

X(s) = X∗ +
∞∑
|i|=1

ci(s) e(�u,i)s . (57)

The convergence of the Psi-series reduces to the convergence of the exponential series for the companion system
as s →−∞. This is guaranteed by the unstable manifold theorem and we have the following theorem.

Theorem 8.1. Let {�, p} be a hyperbolic balance of the system ẋ = f(x) and let x(t, Cu) be the local Psi-series
(56) around the singularity t∗ with arbitrary coefficients Cu. Then, there exist ε ∈ R, α ∈ R, 0 < α < R(ρi), i =
k, . . . , N and δ ∈ R, such that for |a| < δ, 0 < |t − t∗| < ε and M ∈ R sufficiently large

|x(t, a)| < M|a|τα. (58)

Proof. The proof of this theorem relies on Lemma 2.1 applied to a family of companion systems. We know that
the local solution on the unstable manifold of the fixed point X∗ is such that |X(s, a)| < K|a| eαs for some s < s1

real. Now, in order to test the convergence of the Psi-series for t ∈ C, we follow the argument in [16] and consider
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the family of companion systems obtained by the transformation τ = es ei�, where θ ∈ [0, 2π). Taking s real
and fixing θ implies that τ is the distance from the origin on a ray of angle θ with the positive real axis. For each
fixed θ , we obtain a new companion system Fθ for which Lemma 2.1 applies, i.e., we find for each θ a value
Kθ ∈ R. Now take M = max{Kθ, θ ∈ [0, 2π)} ∈ R and the Psi-series converges for all τ in a punctured disk of
radius ε. �

The case of a non-hyperbolic balance (when one or more eigenvalues have zero real parts) is more complicated
since it leaves the possibility of having log(τ ) terms in the first term of the expansions, clearly diverging as τ → 0. The
convergence of local series associated with Kovalevskaya exponents with negative real parts cannot be established
in the general case. Indeed, there is no arbitrary constant associated with the non-dominant exponent q. Hence, the
local series will contain both negative powers of τ associated with negative Kovalevskaya exponents and positive
powers of τ associated with q, there is therefore no ordering of the powers as i increases and convergence can only
be guaranteed for weight-homogeneous vector fields.

9. Finite time blow-up

Consider a real analytic system of ODEs

ẋ = f(x), x ∈ Rn. (59)

Recall that the general solution of (59) is a solution that contains n arbitrary constants. The particular solutions are
obtained form the general solution by setting some of the arbitrary constants to a given value and contain less than
n arbitrary constants. They describe the evolution of restricted subsets of initial conditions. A solution depending
on k arbitrary constants is denoted x = x(t; c1, . . . , ck) and the general solution corresponds to k = n. The solution
based on the initial condition x(t0) = x0 is x = x(t; x0).

The system ẋ = f(x) exhibits finite time blow-up if there exist t∗ ∈ R and x0 ∈ Rn, such that for all M ∈ R,
there exists an ε > 0 satisfying

|t − t∗| < ε ⇒ ‖x(t; x0)‖ > M, (60)

where ‖ · ‖ is any lp norm. The blow-up is forward in time if t∗ > t0 and backward if t∗ < t0.
Equivalently, we use “limt→t∗‖x(t, x0)‖ → ∞” to denote such a blow-up. There are many interesting questions

related to the existence of finite time blow-up in ODEs. Among others: (1) Are there sets of initial conditions S
(k)
0

of dimension k, such that ∀x0 ∈ S
(k)
0 , ∃t∗ ∈ R, such that ‖x(t, x0)‖ → ∞ as t → t∗ (with t < t∗)? (2) Are there

open sets of initial conditions with the same property? (3) What is the nature of these sets? (4) Where do blow-up
occurs in phase space? Some of these questions were investigated in [39,40] in a more restrictive setting.

Here again, we use the notion of companion systems developed in the previous sections. The idea is to build a set
of initial conditions on the unstable manifold of a real fixed point for the companion system and show that, under
certain conditions, this set is mapped to a real set of initial conditions blowing up in the original phase space. We
note that, whenever � ∈ Rn, the corresponding local series solution around the singularities t∗ is real (for real t∗
and real arbitrary constants).

Theorem 9.1. Consider a real analytic system ẋ = f(x). Assume that this system has a balance {�, p} with (k− 1)
positive Kovalevskaya exponents (excluding ρn+1 = q) and let � = (−1)p�. Then, if � ∈ Rn (respectively � ∈ Rn)
there exists a k-dimensional manifold Sk

0 of initial conditions leading to finite forward (respectively backward) time
blow-up.
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Proof. We consider the case of backward finite time blow-up. The case of forward blow-up is obtained similarly by
defining τ = (t∗ − t) instead of τ = (t − t∗). Consider the companion system associated with the balance {�, p},
where � ∈ Rn, then X∗ = (�, 0) is a real fixed point of a real analytic system. Let X0 ∈ Wu(X∗) be a point on
the unstable manifold of X∗. This point is mapped by the inverse of the companion transformation to a point in the
original phase space that blows up in finite time. Indeed

X(s, X0) →
s→−∞X∗ ⇔ ‖x(t, x0)‖ →

t→t∗
∞ (61)

where x0 = τ
p
0 X̂0 ∈ Rn and t∗ = t0−X0,N ∈ R, τ0 = t0− t∗. Now, there exists, by the unstable manifold theorem,

a k-dimensional manifold of points X0, such that X(s, X0) → X∗ as s → −∞. This manifold is mapped to a
k-dimensional manifold of blow-up points x0 in the original phase space. �

In the particular case when the balance is principal and � or � is real, there exists (n− 1) positive Kovalevskaya
exponents and there exists open sets of initial conditions leading to a finite time blow-up. When some of the
Kovalevskaya exponents are zero, i.e., when the fixed point of the companion system is not hyperbolic, the situation
is harder to describe. This is again due to the fact that the stability of non-hyperbolic fixed points cannot be fully
determined by a linear analysis. However, there is a simple case where blow-ups occur only on some components.
Indeed if, for a given balance {�, p}, l components of � are strictly equal to zero and k−1 nonlinear eigenvalues have
positive real parts, then there exists a manifold Sm

0 of dimension m ≥ k+ l leading to finite time blow-up. Moreover,
the location of the blow-up set in phase space can be obtained from the leading order behavior.

Proposition 9.1. Consider a system ẋ = f(x), let Sk
0 be the blow-up manifold obtained in Theorem 9.1 andOsign(�)

(respectivelyOsign(�)) be the orthant in phase space determined by the sign of the components of � (respectively �).
Then, the forward (respectively backward) blow-up occurs in the orthant of � (respectively �), i.e.,Osign(�)

∩Sk
0 
= ∅

(respectively Osign(�) ∩ Sk
0 
= ∅).

We now discuss the existence of finite time blow-up in the presence of first integrals. In some instances, first
integrals can be used to prove directly the absence of finite time blow-up. For instance, if a two-dimensional system
has a first integral I = x2

1 + x2
2 , there is no possibility of finite time blow-up (I = x2

01 + x2
02 = x2

1 + x2
2 ∈ R ⇒

x1, x2 ∈ R ∀ t). If, however, I = x2
1−x2

2 , then blow-up cannot be ruled out as the solutions may go to infinity in such
a way that the difference of the squares remains constant. It is therefore straightforward to obtain the well-known
result.

Proposition 9.2. Let I = I (x) be a first integral for the real analytic system ẋ = f(x). If the level sets of I are
compact, then there is no finite time blow-up (backward or forward) for open sets of initial conditions.

How is this result related to Theorem 9.1? If I = I (x, t) is a first integral for the system ẋ = f(x), then there
exists a first integral I up = I up(x) for the system ẋ = fup(x), where as before fup is the dominant part of the vector
field with respect to the balance {�, p}. Since the first integral I up is constant on all solutions, it is constant on the
particular solution x = �τp, therefore I up(�τp) = I up(�)τ d = 0 ⇒ I up(�) = 0. However, if I (x) is of definite
sign, so is I up(x) and the relation I up(�) = 0 cannot be satisfied if � ∈ Rn. So, the fact that I up is of definite
sign implies that the corresponding balance {�, p} is such that Im(�) 
= 0. This argument provides a proof of a
generalization of the previous proposition.

Proposition 9.3. Let I up = I up(x) be a first integral of a dominant part of the system ẋ = f(x), x ∈ Rn. If the level
sets of I up are compact then there is no finite time blow-up for an open set of initial conditions.
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An example. We consider finite non-periodic Toda lattices with indefinite metric [41,42]. These systems are
variations of the classical Toda lattice. Written in Flaschka’s variables [43], the N -particle system reads

ȧi = si+1b
2
i − si−1b

2
i−1, i = 1, . . . , N, (62a)

ḃi = 1
2bi(si+1ai+1 − siai), i = 1 . . . , N − 1, (62b)

where b0 = bN = aN+1 = 0 and si is either +1 or −1. In the particular case where all si are +1, system (62a) and
(62b) is the Toda lattice. To eliminate the explicit dependence on the signs si , we introduce the variables

xi = siai, i = 1, . . . , N, (63a)

yi = sisi+1b
2
i , i = 1, . . . , N − 1. (63b)

The new system reads:

ẋi = yi − yi−1, i = 1, . . . , N, (64a)

ẏi = yi(xi+1 − xi), i = 1 . . . , N − 1 (64b)

with y0 = yN = xN+1 = 0. Kodama and Ye [44] used the complete integrability properties of this system to
investigate the occurrence of finite time blow-up. In order to study the existence of blow-up and the dimension of
the blow-up manifolds, we study all possible balances of the form

xi = αiτ
pi , i = 1, . . . , N, (65a)

yi = βiτ
qi , i = 1, . . . , N − 1. (65b)

Since the system is weight-homogeneous, we have pi = −1 and qi = −2 for all i. One can order the balances
by the number of vanishing components of the vector �. A combinatorial computation shows that the number of
balances with k vanishing components of � is

(
N

k

)
.

Hence, the total number of possible balances is equal to 2N−1 − 1 (the case where all components of � are zero
corresponds to a Taylor series and not a singular solution). The occurrence of blow-up on open sets of initial
conditions can be readily computed for this problem.

Proposition 9.4. Provided that at least one but not all si = −1, there exists an open set of initial conditions in
R2N−1 leading to finite time blow-up for the system (62a) and (62b). In this type of blow-up only three of the 2N −1
variables (two components of a and one component of b) blow-up.

Proof. In order to have blow-up for open sets of initial conditions, one has to consider the principal balances, i.e.,
the balances for which all nonlinear eigenvalues have a positive or null real parts. Note that since the exponents p, q
are integers, the existence of backward blow-up implies the existence of forward blow-up. Hence, we only consider
backward blow-up. For system (63a) and (63b), there exists N − 1 principal balances of the form (65a) and (65b)
obtained in the following way: let j be an integer between 1 and N − 1 and choose

βi = −αi = αi+1 = −1 if i = j, (66a)

αi = βi = 0, otherwise. (66b)
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All these balances are principal with Kovalevskaya exponents � = {−1, 1(n1 times), 2(n2 times), 3(n3 times)};
where n1 = N1; n2 = N − 2, n3 = 1 if j = 1 or j = N − 1 and n1 = N1, n2 = N − 3, n3 = 2, otherwise.
The corresponding unstable manifold of the companion system can be used to build open sets of initial conditions
for the original variables. Only three of the 2N − 1 variables actually blow-up (namely, xj , xj+1 and yj , for any
given j < N ), the other variables are analytic functions of τ around the singularity. Now, in terms of the original
variables (a, b), we see that, for the balances under consideration, we have βj = −1 and βi = 0i 
= j . Hence, for
any given vector s = (s1, . . . , sN ), with at least one but not all components equal to −1, there exists an entry sj ,
such that sj sj+1 = −1. For this choice of j the corresponding balance provides a real set of initial conditions in
the original phase space. �

The other balances correspond to a situation where more than three variables blow-up but on smaller dimensional
manifolds. In the case where all variables blow-up at the same time, we have the following proposition.

Proposition 9.5. The Toda system (62a) and (62b) exhibits blow-up in all the variables (backward and forward)
if and only if N is even and the signs are alternating (i.e., sisi+1 = −1, i = 1, . . . , N − 1). Moreover, in the case
where blow-up occurs, the blow-up manifold is of dimension N.

Proof. Blow-up occurs in all the variables if and only if there exists a balance (65a) and (65b), such that αi 
= 0
for all i. The computation of such a balance shows that αi = (N + 1) − 2i and βi = i(i − N). However, for N

odd, α(N+1)/2 = 0, in contradiction with the assumption that αi 
= 0. Hence, for N odd, the variable a(N+1)/2 does
not blow-up in finite time. Since all βi are strictly negative, we have to choose sisi+1 = −1 to ensure that bi is real
when yi blows up. If N is even, the 2N − 1 Kovalevskaya exponents are � = {−N + 1, . . . ,−1, 1, . . . , N}, i.e.,
there are N positive Kovalevskaya exponents and the corresponding blow-up manifold is of dimension N . �

10. Conclusions

In this paper, I have used the tools of dynamical systems to describe the local behavior of solutions around their
movable complex-time singularities. The main idea is to reformulate such an analysis as a fixed point analysis of
a new system. Two main tools were used in that regard, the unstable manifold theorem and normal form theory.
They were used to show how the Painlevé property and the complete integrability of dynamical systems can be
understood in terms of linearizability of local solutions around their fixed points. The convergence of Psi-series and
the existence of finite time blow-up manifolds are also direct consequences of this construction.

It would be of great theoretical interest to bypass the construction of the companion system and to develop a
normal form theory of local solutions around their singularities directly in terms of the original variables. A theory
of this type has already been proposed for the perturbed Euler equations in [18].

As far as integrability theory is concerned, the nonlinear analysis of the singular solutions can be completely
carried out within this framework. This provides the optimal conditions that any local analysis can achieve. However,
this type of local analysis only provide necessary conditions for integrability and should be completed with a global
analysis of solutions in complex-time. This analysis, à la Ziglin, is obviously considerably more difficult than the
analysis presented here.

There are many intriguing possibilities regarding the existence of finite time blow-up. For instance, one could
possibly have orbits blowing up both backward and forward in time. These orbits would be the equivalent of
homoclinic and/or heteroclinic orbits for regular dynamical systems. As usual, the next step would be to study the
possibility of splitting for these orbits. One could also use the construction given here to describe the basins of
attraction of finite time singularities and eventually describe their geometry.
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