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Summary. A straight elastic rod with intrinsic curvature under varying tension can un-
dergo an instability and bifurcate to a filament made out of two helices with opposite
handedness. This inversion of handedness, known as perversion, appears in a wide range
of biological and physical systems and is investigated here within the framework of thin
elastic rods described by the static Kirchhoff equations. In this context, a perversion is
represented by a heteroclinic orbit joining asymptotically two fixed points representing
helices with opposite torsion. A center manifold reduction and a normal form trans-
formation for a triple zero eigenvalue reduce the dynamics to a third-order reversible
dynamical system. The analysis of this reduced system reveals that the heteroclinic con-
nection representing the physical solution results from the collapse of pairs of symmetric
homoclinic orbits. Results of the normal form calculation are compared with numeri-
cal solutions obtained by continuation methods. The possibility of self-contact and the
elastic characteristics of the perverted rod are also studied.

Key words. elastic rods, intrinsic curvature, differential growth, heteroclinic orbits,
center manifolds, normal forms, self-contact, helical springs

1. Introduction

In nature, long thin filamentary structures are observed from the microscopic chains of
molecules to the macroscopic braided magnetic flux tubes in solar flares. The central
problem in the study of filaments is to understand the possible changes of configurations
and the dynamics involved in the changes. Filaments at all sizes seem to follow univer-
sal configuration changes triggered by generic instabilities. Consider, for instance, the
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Fig. 1. A cartoon of the curvature-to-writhe instability; as the tension is decreased, the instability
sets in and two helices with opposite handedness are created: a perversion.

coiling of strings, ropes, or telephone cords. If you take a piece of rubber tubing, hold
it between your fingers, and twist its ends, the filament will soon coil on itself. This is
an example of a writhing instability where a local change in twist eventually results in a
global reconfiguration of the filament. In this case we have a twist-to-writhe conversion.
The word writhe refers to global deformation of a filamentary structure. This type of
instability has received considerable interest and is known to be important in processes
such as coiling and super-coiling of DNA structures [1], [2], [3] and morphogenesis in
bacterial filaments [4], [5], [6].

Another type of writhing instability is the curvature-to-writhe instability where
changes of curvature trigger global shape reconfigurations [7]. This instability can also
be observed in telephone cords. If one completely untwists the helical structure of the
cord and pulls the ends, a straight cord can be obtained. Now, if one slowly releases the
ends, the filament suddenly changes shape to a structure composed of two helical struc-
tures with opposite handedness and linked by a small inversion (see Fig. 1). We refer
to this structure as a perversion. The German mathematician J. B. Listing [8], [9] refers
to an inversion of chirality as perversion as used by D’Arcy Thompson to characterize
seashells: “the one is a mirror-image of the other; and the passing from one to the other
through the plane of symmetry (which has no ‘handedness’) is an operation which List-
ing called perversion” [10, p. 820]. Maxwell, in his 1873 treatise on electromagnetism,
also uses the word perversion: “They are geometrically alike in all respects, except that
one is the perversion of the other, like its image in a looking glass” [11]. The usage of the
word perversum actually originated in the description of rare left-handed specimens of
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Fig. 2. An actual perversion in a telephone cord.

seashells in a species of overwhelming right-handed individuals (for instance, there are
only six known left-handed specimens out of the million known Cerion, a West Indian
land snail [12], [13]).

A qualitative explanation of the creation of helices with opposite handedness (see
Fig. 2) can readily be given. Consider a filament with given nonvanishing intrinsic
curvature, that is, the unstressed configuration is coiled on itself (a multicovered ring,
if ones disregards self-contact). Now, take this filament and completely untwist it and
straighten it out. By applying sufficient tension (and proper end moments), one can
completely straighten out the filament. Note that the total twist of the straight filament is
zero. Now, as one reduces the tension, there is a critical value of the tension below which
the straight filament becomes unstable. The optimal solution (the solution with lowest
energy) is a helix whose torsion and curvature are functions of the tension. However, in
order to create a helix, one of the ends must rotate. As we do not allow the ends to rotate,
this solution cannot be obtained. Nevertheless, another solution with zero twist can be
obtained by smoothly pasting two optimal helices together with a small inversion. This
is the perversion solution. It can be obtained by reducing the tension of an intrinsically
curved twistless straight filament whose total twist is fixed. One of the most fascinating
natural manifestations of perversion can be found in the growth of some climbing plants.
Among the many different mechanisms climbing plants use to climb and grow along
supports, the so-called tendril-bearers constitute an important class (e.g., the grape-vine,
the hop, the bean, the melon). In the first stage of their development, tendrils are tender,
soft, curly, and flexible organs originating from the stem. As they grow, the tendrils
circumnutate [15], [16]. That is, the tip of the tendril describes large loops in space by
completely rotating on itself until it touches a support, such as a trellis, a pole or a branch.
If the circumnutation does not result in a contact, the tendril eventually dries and falls
off the stem. The tendrils which are in contact with a support enter another phase of their
development, and their tissues develop in such a way that they start to curl and tighten up,
eventually becoming woody, robust, and tough. This curling provides the plant with an
elastic springlike connection to the support that enables it to resist high winds and loads.
Since neither the stem nor the support can rotate, the total twist in the tendril cannot
change. Thus the conditions are ripe for obtaining a perversion, and as the tendril curls
on itself, the coils of the helix are reversed at some point so that the tendril goes from
a left-handed helix to a right-handed one, the two being separated by a small inversion,
the perversion (see Fig. 3).

The phenomenon of perversion in climbing plants has a long, interesting scientific
history. Inversion of helicity in tendrils already appears in the illustration (see Fig. 4) of
Linnaei in Philosophia Botanica [17]. However, according to de Candolle [18], [19], the
first record of a scientific observation of perversion goes back to a letter of the French
scientist Ampère to the French Academy of Sciences. From then on, almost all major
botanists in the nineteenth century, such as Dutrochet in 1844 [20], von Mohl in 1852
[21], and Léon in 1858 [22], [23] describe the perversion found in tendrils.
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(a) (b)

Fig. 3. (a) Growth of climbing plants (tendril bearers) as drawn by Darwin [14]. In the first stage
(A), the tendrils are circumnutating until they find an attachment. In the second stage (B), the
tendrils are attached and perversion sets in. (b) Another example of tendril perversion in Bryonia
dioica. Illustration from Sachs’s Text-book of Botany (1875).

It is Charles Darwin, inspired by related studies by his friend, the American botanist,
Asa Gray [24], who gave the first complete and truly scientific analysis of the growth
of climbing plants in his delightful little book The Movements and Habits of Climbing
Plants [14] based on an essay presented at the Linnean Society in 1865. In there, among
many other observations (such as the spiral growth of stems and the phenomenon of
circumnutation), he devotes a whole chapter on the problem of tendril growth and gives
the first qualitative explanation for the inversion: “when a tendril has caught a support
and is spirally contracted, there are always as many turns in one direction as in the
other; so that the twisting of the axis in the one direction is exactly compensated by the
twisting in the opposite direction. . . . I cannot resist giving one other illustration, though
superfluous: When a haberdasher winds up ribbon for a customer, he does not wind it
into a single coil; for, if he did, the ribbon would twist itself as many times as there
were coils; but he winds it into a figure of eight on his thumb and little finger, so that
he alternately takes turns in opposite directions, and thus the ribbon is not twisted. So
it is with tendrils, with this sole difference, that they take several consecutive turns in
one direction and then the same number in an opposite direction; but in both cases the
self-twisting is avoided” (see Fig. 5).
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Fig. 4. Climbing plants (right-handed) with tendrils
(with perversion) as drawn by Linnaei in Philosophia
Botanica [17].

Fig. 5. Tendril perversion as drawn by Darwin [14].
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Another striking occurrence of perversion can be found in the structure of human
umbilical cords. Umbilical cords are generally made out of two arteries and one vein
embedded in a compact gel-like structure known as the Wharton jelly [25]. The arteries
are longer than the vein, which is itself longer than the jelly, and therefore the cord forms
a triple helix. The handedness of this helix was already described in 1521 by Berengarius
[26] and has fascinated medical doctors and scientists since then [27]. The umbilical cord
is on average 50–60cm long with up to 40 helical turns, and helicity can be observed as
early as 42 days’ gestation [28]. Umbilical cords can be either left-handed, right-handed,
straight, or with mixed helicity. Strangely enough, the ratio of left-handed to right-handed
cords is about 7 to 1, the usually accepted ratio of right-handed to left-handed adults.
However, there does not seem to be any statistical correlation between the handedness of
the cord and the hand preference as an adult [29]. According to different statistical studies,
inversion from left-handed to right-handed structure in umbilical cords varies from 2% to
26% of all cases [27], [30]. This discrepancy comes from the fact that most studies have
not focussed on perverted umbilical cords and have classified some of them as predomi-
nantly right- or left-handed cords. To date, there is no model for the growth of umbilical
cords that would explain the difference or handedness, its inversion or even the occur-
rence of helicity. Both genetic and mechanical factors seem important as the correlation
between umbilical cord helicity in monozygotic twins [26] and experiments on the effect
of tension on fetal activity in laboratory rats indicate [31], [32]. In light of the present
work, we propose that the onset of umbilical perversion is the result of biased differential
growth of the cord with external constraints such as tension and blockage of twist.

Inversion of helicity appears also in the microscopic world. The flagella of some
bacteria such as Salmonella or E. coli have helical shapes. These flagella, about 4µm
long, are composed of a few protofilaments made out of a single protein. Depending
on the respective position of the different protofilaments, the flagella can be, in their
unstressed configuration, either right-handed or left-handed [33], [34], [35], [36]. They
are attached to the cell-body through a molecular rotary motor [37] and are observed
to flip from a left- to a right-handed helix when the running motion is interrupted by a
tumble motion [38], [39]. This inversion of helicity plays a crucial role in the ability of
the bacterium to change direction of motion and is performed by propagating a right-
handed helix onto a left-handed helix, henceforth creating a perversion [40]. Perversion
can also be observed in a variety of other microscopic biological systems: in the shape
of certain bacteria such as spirochetes [41], in some mutant forms of B. subtilis [42],
in the microscopic structure of cotton fibers [43], or in the shape of miniature (1 to 2
mm long) seashells [44]. Finally, in the textile industry, there is a specific method used
to roughen yarns and based on the creation of inversion along the fibers, known as the
false-twist technique [45].

Perversion in tendrils was first modeled by Keller [46], who derived the equations
governing the shape of tendrils based on the assumption that the shape is a minimizer
of the energy of the system (composed of the elastic energy given by the strains and
the potential energy of the force applied). Recently, Goriely and Tabor [7] identified
the role of intrinsic curvature and studied the formation of a perversion as a dynamical
solution of the Kirchhoff equations. They found the critical value of the tension that
gives rise to a perversion for both finite and infinite filaments, together with the time-
exponents associated to these solutions (in the inertial case). Here, we study the onset of
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perversion in elastic rods with intrinsic curvature by using the static Kirchhoff equations
for thin elastic rods with linear constitutive relationships. We study the problem from a
dynamical system perspective [47], [48], [49] and show that perversion can be represented
in this setting by heteroclinic orbits. We use the first integrals of the problem to identify
the asymptotic helices that perversion solutions connect and compute the mechanical
properties of the perversion. This approach and the numerical analysis performed in the
last section generalize and complement the results obtained in [7], which was mostly
a linear analysis of the solution and its dynamics. The role of intrinsic curvature in the
stability of elastic filaments within the context of the Kirchhoff equations has also been
considered for closed twisted ring solutions [50], helical filaments [51], twisted straight
filaments under tension [52], and in the shape of DNA molecules [53].

2. The Kirchhoff Model

We use the Kirchhoff model of elastic rods to describe the statics of rods with intrinsic
curvature. In the Kirchhoff model, an elastic rod is represented by a space curve with
given physical properties. The space curve represents the central axis, the properties of
the rod are shape (how it is oriented in space), stiffness (elastic properties of a particular
rod), twist (how adjacent cross-sections are oriented along the length of the rod), and
spin (how a cross-section rotates in time). The external stresses, forces, and moments
acting on the rod are averaged over cross-sections of the filament.

2.1. Kinematics

A ribbon is defined as a pair given by a space curve, x(s, t) together with a unit basis
vector d1(s, t) lying in a plane normal to the curve. Here, s is the arclength and t is time,
i.e., for each t , x(s, t) and d1(s, t) are C3 maps from an interval of R (possibly infinite)
into R

3. The kinematics of ribbons is described in terms of a director basis,

(d1,d2,d3) = (d1(s, t),d2(s, t),d3(s, t)), (1)

where the basis vector d3(s, t) is the tangent vector to the curve:

d3 ≡ x′, (2)

and (·)′ ≡ ∂(·)/∂s, ˙(·) ≡ ∂(·)/∂t . The introduction of ribbons rather than space curves
allows one to attach to a space curve material properties such as twist, intrinsic curvature,
or bending stiffness (see next section). The vector d1 will be chosen so as to follow that
particular material property. For instance, in the case of rods with elliptical cross-sections,
one can choose the vector d1 to follow the direction of the major or minor axis (see Fig. 6).
The vector d2 = d3 ×d1 is then chosen so that (d1,d2,d3) is a right-handed orthonormal
basis. We can measure the twist and spin in the filament by measuring how much the
basis twists or spins as s or t varies. The requirement that the basis remains orthonormal
in space and time implies the existence of a twist vector κ and a spin vector ω satisfying

d′
i = κ × di , i = 1, 2, 3, (3)

ḋi = ω × di , i = 1, 2, 3. (4)
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Fig. 6. A filament with noncircular cross-section, showing the basis vec-
tors d1 and d2. The vector d3 is tangent to the central axis curve x(s, t).

The director basis (d1,d2,d3) can be related to the Frenet basis (n,b, t) (normal, binor-
mal, and tangent vectors) by introducing on each cross-section an angle ζ between the
normal vector and d1. Then, the Frenet curvature κ and torsion τ defined through the
Frenet equations

t = x′, t′ = κn, b = t × n, b′ = −τn, (5)

are related to the components of the twist vector by

κ = (κ sin(ζ ), κ cos(ζ ), τ + ζ ′). (6)

Here, κ1 and κ2 are the components of curvature, while κ3, called the twist density,
contains information on both the torsion of the curve and the twist of the filament. We
adopt the standard convention that the curvature κ ≥ 0 and the torsion τ ∈ R. The
derivative ζ ′ measures the change in the angle between d1 and the normal to the curve;
this is the twist. The twist thus measures how consecutive cross-sections rotate along the
filament. The twist is distinguished from the total twist of the filament defined as

∫
κ3ds,

where the integral is taken over the length of the filament. The total twist measures the
total number of turns a basis vector makes along the full length of the filament, relative
to a fixed vector. Thus, the total twist is a global property of a filament depending on
both torsion and twist, whereas the twist is a local property defined at each point s along
the filament.

2.2. Dynamics

We assume that the filament is inextensible, unshearable, and has constant cross-section.
The vector d1 is chosen to lie along one of the principal axes of inertia of the filament’s
cross-section. The Kirchhoff model relates the force and moment, called F and M,
respectively, acting across cross-sections of the filament to the director basis. The balance



Tendril Perversion in Intrinsically Curved Rods 249

of linear and angular momenta across each cross-section leads to the Kirchhoff equations
[54], [55],

F′ = ξ Aẍ, (7)

M′ + d3 × F = ξ(I2d1 × d̈1 + I1d2 × d̈2), (8)

where ξ is the (constant) mass per unit volume of the rod and A is the cross-sectional
area; the quantities I1 and I2 are the principal moments of inertia of the cross-section.

The unstressed state is the stationary shape of a filament with no external constraints.
This state can be defined by its intrinsic curvature, which we call

κ(u) = κ
(u)
1 d1 + κ

(u)
2 d2 + κ

(u)
2 d2. (9)

The Kirchhoff equations are then closed by the constitutive relation of linear elasticity
theory:

M = E I1(κ1 − κ
(u)
1 )d1 + E I2(κ2 − κ

(u)
2 )d2 + µJ (κ3 − κ

(u)
3 )d3, (10)

where E is Young’s modulus, µ is the shear modulus, and J is a geometric factor
depending on the cross-sectional shape [56]. The elastic energy density of the filament
is given by

E = M · (κ − κ(u)), (11)

so that the state of lowest elastic energy is given by κ = κ(u), the unstressed state.

2.3. Statics and Rescaling

In the static case, all time derivatives in (7–8) are set to zero, and the system becomes

F′ = 0, (12)

M′ + d3 × F = 0. (13)

We rescale the system by choosing combinations of the length [L], time [T ], and mass
[M] units in the following way:

[M] = ξ
√

AI1,
[M][L]3

[T ]2
= E I1, (14)

which amounts to making the substitution

M → E I1

L
M, F → E I1

L2
F, (15)

s → Ls, κ,κ(u) → L−1 κ,κ(u). (16)

In the static case, the L remains arbitrary. This contrasts with the dynamic case, in which
we must choose L = √

A/I1 in order to nondimensionalize the equations (7–8). This
degree of freedom remains in the static case because the force F contains a time scale
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which remains arbitrary in the static case. Then, the static Kirchhoff equations reduce to
the scaled form

F′ = 0, (17)

M′ + d3 × F = 0, (18)

M = (κ1 − κ
(u)
1 )d1 +�(κ2 − κ

(u)
2 )d2 + �(κ3 − κ

(u)
3 )d3, (19)

where � = I2/I1 is the ratio of moments of inertia and � = µJ /E I1 is the ratio of
torsional stiffness to the bending stiffness in the direction d1. The asymmetry in the
filament is measured by �. The choice of axis along which d1 lies determines whether
� is larger or smaller than unity. If we choose d1 to lie in the direction of the largest
bending stiffness, that is I1 ≥ I2, we have� ≤ 1, whereas, in the case I1 ≤ I2, we have
� ≥ 1. In the case of a circular cross-section, I1 = I2, and

� = 1, � = (1 + σ)−1 ∈ [2/3, 1], (20)

where σ is Poisson’s ratio. Values of � near 1 correspond to incompressible material
such as steel, while values near 2/3 correspond to hyperelastic material such as rubber.

The equations (2), (3), and (17–19) form a closed system. This system decouples, so
that one may solve (17–19), then (3), then (2), separately. Thus, we obtain a complete
description of the filament by solving (17–19).

The quantities in the scaled system (17–19) still have a dimension. From (19), we see
that the scaled moment M has the dimension of an inverse length, and that the scaled force
F has the dimension of the inverse of a squared length; hence every variable involved is
a length to a power. However, the system cannot be further simplified by choosing the
length unit [L], because the remaining constants � and � are already dimensionless.
Nevertheless, it is still possible to choose a convenient length scale for a given problem.
For example, if we consider a finite rod, a natural choice for L is the length of the rod.
Another natural length scale, in the case of a rod which is a ring in its unstressed state,
is the radius of the ring. Yet another length scale which is convenient for certain cases is
the radius of the rod if the rod has a circular cross-section.

The fact that the length unit [L] is undetermined has yet another implication. Consid-
ering the static system (17–19), we see that every known solution actually determines a
one-parameter family of solutions. More precisely, if {F(s),M(s),κ(s)} is a solution of
the system, then {λ−2F(λs), λ−1M(λs), λ−1κ(λs)} is another solution of the system for
every real nonvanishing λ. That is, the system is scale-invariant. Furthermore, if such
a transformation is performed on the solution together with a rescaling of the length
unit [L] by a factor λ−1, the solution remains unchanged, although the rod thickness is
modified by a factor λ−1. Hence, the statics of a filament, in the Kirchhoff model, is
independent of the rod thickness.

2.4. Intrinsic Curvature

Intrinsic curvature describes the property of materials which in their unstressed states
have locally a nonvanishing curvature. In terms of the unstressed curvature vector, we
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consider materials which (i) only exhibit intrinsic curvature (no intrinsic twist or torsion),
(ii) in their unstressed shape, are locally curved in the direction of either the lowest or
the highest bending stiffness. That is,

κ(u) = (K , 0, 0). (21)

If d1 lies along the principal axis of inertia, � ≤ 1, and the curvature is in the direction
of lowest bending stiffness. This last assumption, while restrictive, seems natural as one
expects a rod to be locally curved in the direction of lowest bending stiffness. Thus, the
most common case would be the one in which � ≤ 1, but we include the case � ≥ 1
for greater generality.

In light of the discussion in the previous section, we can always rescale, by setting
the length scale L = K −1, the radius of the ring the rod forms in its unstressed state.
This implies that κ(u) = (1, 0, 0), and we can take K = 1 without loss of generality.
However, in our analysis we leave K undefined, in order to make explicit the dependence
of solutions on the intrinsic curvature.

In physical systems, there are various mechanisms for creating intrinsic curvature
starting with an initially straight unstressed filament. For instance, differential growth is
used in tendril perversion and in many other biological systems to curve strands [57].
Another mechanism is heat setting as used, for instance, in the textile industry where
it is known as false-twist technique [58]. In this process, an initially straight filament
is heated and shaped as a ring or helix and cooled down. Due to the thermoplasticity
of many materials, the material conserves its new shape at lower temperature. Finally,
in a common experiment, chemical unbonding and rebonding is performed on hair, in
most salons, to artificially create curls. Again, this process is based on the simple idea
of destroying certain chemical bonds and setting the filament in the desired shape where
the bonds are then re-created (usually by both chemical and heat setting).

We now study how differential growth can affect the intrinsic curvature in the sim-
plest case. Consider a filament initially of length f (z) with f (0) = 1, where z is the
cross-sectional width. Suppose the growth rate at width z is proportional to the length
of the filament. The length as a function of t and z is then given by L(z, t) = f (z)ekt .
Since the filament is unshearable, the cross-sections remain at right angles to the edges
and the curvature of the filament remains constant in time. The edges of the filament
form circular arcs with radii r and R (see Fig. 7). The curvature κ of the entire fila-
ment is then κ = (r + h

2 )
−1. A simple computation shows that the curvature of the

filament is κ = 2[ f (h) − 1]/(h[ f (h) + 1]). In the case of linear differential growth,
f (z) = az + 1, we have κ = [ h

2 + b]−1. Since we assume that the cross-section of
the filament is small compared with the length, h � 1, the curvature is approximately
κ = a + O(h).

In general, in biological material differential growth takes place in such a way that
different points on the cross-sections experience different growth rates. This, in turn
creates both intrinsic curvature and intrinsic twist that can vary with time and arclength.
A complete treatment of the kinematics of differential growth requires a geometric
description of each material line of the filaments and can be performed within the context
of standard differential geometry [59].
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r

R=r +h

L(h,t)

L(0,t)

The upper side 
grows faster than 

the lower side

Fig. 7. Differential growth. The filament after growing for a time t . The dashed line is the
central axis of the filament.

3. Static Solutions

We now seek solutions of the static equations (17–19). Forming the vector X = (F1, F2,

F3, κ1, κ2, κ3)
T , we obtain a system of six ordinary differential equations:

X′ = g(X). (22)

We note that the system admits, for all values of the parameters �, �, and κ(u), three
first integrals:

I1 = κ2
1 +�κ2

2 + �κ2
3 + 2F3, (23)

I2 = F2
1 + F2

2 + F2
3 , (24)

I3 = F1(κ1 − κ
(u)
1 )+�F2(κ2 − κ

(u)
2 )+ �F3(κ3 − κ

(u)
3 ). (25)

These first integrals represent, respectively, a local form of the energy, the force, and the
inner product of the force with the moment. System (22) can be shown to be a Hamiltonian
system with a noncanonical symplectic structure (similar to the one obtained by Mielke
and Holmes [47]). It has three degrees of freedom with three first integrals (23–25).
However, two of these integrals, namely (24–25) are so-called Casimirs and cannot be
used directly to integrate the system following Poincaré-Arnold’s theorem [60], [61].
They can be used to reduce the system to a four dimensional (two-degree of freedom)
canonical Hamiltonian system with one first integral (the Hamiltonian itself). However,
we have not been able to use this additional structure to our advantage and in the following
we study the system using classical methods from dynamical systems.

In the case κ(u) = K d1, equation (22) reads

F ′
1 = F2 κ3 − F3 κ2, (26)

F ′
2 = F3 κ1 − F1 κ3, (27)

F ′
3 = F1 κ2 − F2 κ1, (28)



Tendril Perversion in Intrinsically Curved Rods 253

κ ′
1 = F2 + (�− �)κ3 κ2, (29)

κ ′
2 = −(F1 + (1 − �)κ3 κ1 − K κ3)/�, (30)

κ ′
3 = ((1 −�)κ1κ2 − Kκ2)/�. (31)

The associated flow is invariant under two symmetries:

R1: s → −s, F1 → −F1, F2 → −F2, κ3 → −κ3, (32)

R2: s → −s, F2 → −F2, κ2 → −κ2. (33)

We consider an ideal infinite filament, so that s ∈ R. In this context, the space curve
x̂ = x̂(s) representing a perversion approaches asymptotically helices with opposite
handedness as s → ±∞. Solutions in this case are bounded, and we therefore look
for bounded solutions to (26–31), e.g., heteroclinic, homoclinic, or periodic orbits. As
shown in the next section, helices of opposite handedness are different fixed points of
the system (26–31). A perversion, in this setting, is thus a heteroclinic orbit.

3.1. Helical Solutions

A complete discussion of all fixed points of (26–31) is given in Appendix A where it
is shown that all fixed points are either twistless helical solutions or twisted straight
solutions. A helix is a curve with constant curvature κ and torsion τ . A helical solution
represents a filament whose central axis is a helix. Therefore, all helical solutions have
the form

κ = (κ sin(ζ ), κ cos(ζ ), τ + ζ ′), (34)

where κ and τ are constant but ζ is, in general, a function of s. The twist is given by ζ ′,
so that a twistless helix is one in which ζ ′ = 0. We show in Appendix A that in order for
a helical filament to be a stationary solution of (26–31) we must have ζ ′ = 0 or κ = 0;
therefore all helical filaments (excluding the straight helix) are twistless. Note however
that the total twist (which includes torsion) of any section of a helix is not zero, it is just
the pointwise twist density that is zero. Moreover, the helical solutions are such that

κ = κd1 + τd3, (35)

F = γ τκ, (36)

where γ = ( K
κ

−1+�). This implies that the possible asymptotic helices in a perversion
do not depend on the cross-section’s characteristics, but only, as we now show, on the
tension, intrinsic curvature, and �, the ratio of twisting to bending stiffness.

The tension applied at the ends of a rod forming a perversion is applied along the
axes of the asymptotic helices. The axis of a helix is the centerline of the cylinder around
which a helix is wrapped. This is not to be confused with the axis of a rod, which is
the centerline of a rod. In order to compute the force in the direction of the axis of the
asymptotic helices, we compute the force in terms of a fixed frame of reference. Let
(e1, e2, e3) be a fixed Euclidean basis, where e3 is chosen to lie along the axis of the
asymptotic helices of a perversion. The external tension is then applied along e3, and, in
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order to compute the applied external force in terms of the components of F, we calculate
the component of the force vector in this direction. A helix with curvature κ and torsion
τ , with axis along e3, can be written

x(s) = κ

λ2
cos(λs) e1 + κ

λ2
sin(λs) e2 + τ

λ
s e3, (37)

where λ = √
κ2 + τ 2. Since helical filaments have no twist, we can write the director

basis (d1,d2,d3) in terms of the Frenet basis (n,b, t), determined by (5). Substituting
the twist vector κ = κd1 + τd3 into the twist equations (3), the equations for the basis
vectors are

d′
1 = τ d2, (38)

d′
2 = κ d3 − τ d1, (39)

d′
3 = −κ d2. (40)

Using (5), and the fact that d3 = t, equations (38–40) are solved by

d1 = b, d2 = −n, d3 = t. (41)

Hence, we can calculate (d1,d2,d3) in terms of the Euclidean basis using (5),

d1 = 1

λ
(τ sin(λs) e1 − τ cos(λs) e2 + κ e3), (42)

d2 = cos(λs) e1 + sin(λs) e2, (43)

d3 = 1

λ
(−κ sin(λs) e1 + κ cos(λs) e2 + τ e3). (44)

Thus, the force in the Euclidean basis is

F = F1d1 + F2d2 + F3d3

= 1

λ
[λ cos(λ s ) F2 + τ sin(λs) F1 − κ sin(λs)F3] e1 (45)

+ 1

λ
[λ sin(λs)F2 − τ cos(λs)F1 + κ cos(λs)F3] e2 + 1

λ
[τ F3 + κF1]e3,

where the Fj ’s are s-independent. Note that the external tension is given by T = 1
λ

[τ F3+
κ F1].

3.2. Asymptotic States

We now identify among the two-parameter family of helical solutions (given by curvature
and torsion), a one-parameter family of solutions formed by the asymptotic states of
heteroclinic solutions. A perversion, κ̂ = κ̂(s), is a heteroclinic solution that connects
asymptotically two helices with the same curvature κ but opposite torsion τ , that is

κ̂ →
s→±∞ κd1 ± τd3. (46)
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K/2 K

κ

κ3

Fig. 8. The set of helices that can connect asymptotically to another helix with opposite torsion
forms an ellipse in the curvature–torsion plane.

Thus, on this solution we can calculate the first integrals in terms of the parameters and
the tension. Substituting (35–36) into the first integrals (23–25), we obtain

I1 = κ2 + (� + 2γ )τ 2, (47)

I2 = γ 2τ 2(κ2 + τ 2), (48)

I3 = τγ [�τ 2 − κ(K − κ)]. (49)

We note that I1 and I2 are even in τ , while I3 is odd in τ . Therefore, on the two asymptotic
fixed points, we have I3(τ ) = −I3(τ ), which implies I3 = 0. Thus, in the curvature–
torsion plane, the set of possible asymptotic helices form the ellipse

(
κ − K

2

)2

+ �τ 2 = K 2

4
. (50)

A perversion is a heteroclinic orbit connecting two points on this ellipse, as seen in
Figure 8. Now, we solve for the asymptotic curvature and torsion in terms of the tension
and parameters of the system. The external force is applied at the ends of the filament.
Without loss of generality, we assume that τ > 0. The other asymptotic helix then has
torsion −τ . We call the force at the ends T = F.e3, the applied tension, which is applied
along the axis of the asymptotic helices. That is, T is the magnitude of the applied
tension, which is applied in opposite directions at s = ±∞. Substituting (36) into the
z component of the force, and identifying it with the tension, we have another equation
for the curvature and torsion:

T = γ τλ. (51)

The previous equation, along with (50), allows us to solve for κ and τ in terms of the
parameters and the applied tension. The following equation for κ can be derived by
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Fig. 9. Asymptotic helices. (a) The curvature, and (b) the torsion of the asymptotic helices in a
perversion, as functions of the applied tension.

solving for τ 2 and substituting into (51):

[K − κ(1 − �)]3 (K − κ) = �2 T 2. (52)

Equation (52) is a fourth-degree polynomial equation for κ for which there is exactly
one real solution in 0 < κ < K , the physically relevant case, for 0 < T < K 2/�.
The asymptotic curvature κ varies monotonically from K to 0 as the tension T varies
from 0 to K 2/�. The tension T = K 2/� is the critical tension above which the solution
representing a perversion does not exist. At T = 0, the filament is a ring with radius K −1,
and for T ≥ K 2/� the filament is straight. The curvature as a function of the tension is
obtained by solving (52) and is seen in Figure 9a. Furthermore, the first integrals are

I1 = 2
K 2

�
+
(

3 − 4

�

)
Kκ + 2

�
(1 − �)κ2, (53)

I2 = T 2, (54)

I3 = 0, (55)

where κ is given by the solution of (52).
We can now deduce the boundary conditions necessary to produce a perversion so-

lution as we have defined it. We have defined a perversion in an idealized form as a
heteroclinic orbit. In this setting, for a rod with intrinsic curvature K in the direction d1,
and a tension T applied at the ends at ±∞, the boundary conditions are given by the
asymptotic condition (46). If the tension is positive, then the curvature of the asymptotic
helices is different from the intrinsic curvature. The control parameter in the problem is
the tension T . From the previous analysis, once T is given, one can obtain the asymptotic
curvature κ and torsions ±τ . Therefore, the moment and force at infinity are given by

M = (κ − K )d1 ± �τd3, (56)

F = γ τκ, (57)

where γ and κ are defined in (35). Physically, when a rod is held straight and the tension
slowly released, a moment must be applied at the ends in order to keep the ends from
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rotating. The condition for a perversion solution is that the total twist is zero, which is
equivalent to the condition that the ends do not rotate as the tension is released.

Clearly, these infinite homoclinic orbits are not physical solutions in the sense that
there is no infinite filament. However, we show that the heteroclinic solution approaches
the asymptotic helices exponentially fast (in arclength) so that a finite piece of a hetero-
clinic orbit symmetric with respect to torsion gets so close to the limiting helix solutions
that boundary conditions would be close to those of a finite rod. Moreover, the normal
form analysis performed in this paper reveals the existence of a family of periodic orbits
with arbitrary period converging to the heteroclinic orbit. These solutions can be matched
to specific symmetric boundary conditions for finite-length perversion solutions.

3.3. Spring Characteristics

A perversion in a rod makes a twistless spring, a spring with zero total twist. The
characteristics of the spring, i.e., the Hooke’s constant, can be calculated in terms of the
properties of the material from which the rod is made: its Young’s modulus and Poisson
ratio. In particular, we can calculate how much a spring formed by a perversion deviates
from Hooke’s law, F = hx , for an ideal spring where x is the distance along the axis
of the spring. In this section, we compare the characteristics of a spring made from a
perversion to a spring made from a helix. We first discuss the properties of a spring made
from a perversion.

Consider a rod with intrinsic curvature K in the direction d1. When no tension is
applied to the rod, the rod forms a ring of radius 2π /K . We can consider this state to
be the natural state of the rod, even though for a rod with a finite radius, the rod can
never obtain the ring shape, as self-contact would prevent tight packing. The diameter
of the rod is taken into account in the next section. When a tension T is applied at the
ends of the rod, in the direction of the axis of the helix (normal to the plane the ring lies
in when no tension is applied), the rod forms a perversion. We calculate the length the
spring is stretched by a tension T in the direction of the axes of the asymptotic helices.
Consider the unstretched ring, and two material points P1 and P2 on successive rings. In
the unstretched state, P1 and P2 occupy the same point in space. When tension is applied,
the points separate as two asymptotic helices are created, connected by the perversion
(Fig. 10). We assume that the points P1,P2 lie on the same asymptotic helix given by

x(s) = 1

λ2
(κ cos(λs), κ sin(λs), τλs). (58)

Taking P1 = x(0), we have P2 = x(2π /K ). The distance d between the z-coordinates
of P1 and P2 is d = 2πτ /λK . Using the condition that the curvature and torsion lie on
the ellipse (50), d is given by

d = 2π

K

√
K − κ

K − κ(1 − �)
. (59)
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P2

d d

Fig. 10. The stretch of asymptotic helices in a perversion under tension. The points P1 and P2

are identified on the multicovered ring (left). The helix is stretched in such a way that these two
points remain along the same vertical axis (middle and right pictures).

Solving for κ , and using the relation (52) between the tension T and κ , the relation
between the tension and d is

T = K 3�

2π

d(
1 − d2 K 2(1−�)

4π2

)2 . (60)

This relation can be expressed in terms of the unscaled variables. Recall that the force
and intrinsic curvature were scaled by

F → E I1

L2
F, κ(u) → L−1 κ(u), (61)

where L is the length scale. We call the unscaled tension T̃ , and the unscaled intrinsic
curvature in the direction d1, K̃ . By the preceding scalings, we see that

T = L2

E I1
T̃ , K = L K̃ . (62)

Making these substitutions, choosing the length scale to be L = 2π /K , and dropping
the tildes, the relation between the unscaled tension and d becomes

T = h
d

(1 − d2(1 − �))2
, (63)

where h = K 2 � E I1 = 4π2 � E I1. The length l of the rod in the z-direction is l = nd,
where n is the number of rings in the unstressed rod. Therefore, d is the ratio of the
length of the rod in the z-direction to the length of the fully stretched, straight rod. Since
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the circumference of a ring is 1, n is also the length of the fully stretched straight rod and
0 ≤ d ≤ 1. Thus (63) gives the relation between the tension and the fractional length of
the spring. To third order, (63) reads

T = hd + 2 hd3 (1 − �)+ O(d5). (64)

Since 0 ≤ (1 − �) ≤ 1/3 and 0 ≤ d ≤ 1, the deviation of this relation from Hooke’s
law is very small for small d . However, as the rod is stretched to near its full length,
d → 1 and the cubic term dominates. The tension T varies from 0 to h/�2 as d varies
from 0 to 1, in contrast to the ideal spring, in which the tension varies from 0 to h. Note
that as � → 1, or as the material gets stiffer, the elastic properties of a perversion spring
approach those of an ideal spring.

Now, we calculate the properties of springs made of helices. Consider a rod that is
helical in its unstressed state κ(u) = K d1 +τ0 d3. Consider the case similar to that of the
spring made of a perversion, in which the ends are held so that they do not rotate as the
tension is changed, where the tension is applied at the ends in the direction of the axis of
the helix. While the ends are held so that they do not rotate, a moment must be applied
to the ends. As tension is applied, the helix deforms to a new helix with curvature κ and
torsion τ . Not allowing the ends to rotate imposes the constraint that the total twist is
constant:

Tw =
∫
κ3ds =

∫
τ0ds =

∫
τds. (65)

This constrains the torsion τ to remain constant, that is, τ = τ0. The relation (51) holds
(with the corresponding value of γ given in Appendix A), and the tension is given by

T = γ τ λ =
(

K

κ
− 1

)
τ0λ0, (66)

where λ2
0 = K 2 + τ 2

0 . As before, we look at the distance of two material points in the
direction of the axis of the helix. Letting P1,P2 be two points on successive rings when
no tension is applied, and choosing P1 = x(0), then P2 = x(2π /λ0). The distance d
along the helical axis between the two material points is thus

d = 2π τ

λλ0
. (67)

Converting to unscaled variables,

T → L2

E I1
T, K → L K , τ → Lτ, (68)

and choosing the length scale to be the arclength between P1 and P2, L = 2π /λ0, the
unscaled relation between the tension and d is

T = E I1

(
K τ√
1 − d2

− τ 2

d

)
. (69)

Now, in the unstressed state, d = d0 = τ0/λ0. We see that T varies from 0 to ∞ as d
varies from d0 to 1. Let d = d0 + d̂. Then

T = h d̂ + O(d̂2), (70)
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Hooke’s law
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Fig. 11. Comparison of springs made of perversions and helices. The dash-dot curve is the plot
of the tension T versus the distance d for a perversion. The solid curve is the plot of the tension T
vs. d̂ for a helical spring. The dashed curve is the plot of the tension vs. the displacement for an
ideal spring (Hooke’s law).

where, since L = 2π /λ0,

h = E I1 4π2

(
1 + 4π2 τ

2
0

K 2

)
. (71)

As before, the Hooke’s constant for small tension is proportional to E I1, but larger than
that for the spring made of a perversion. We also note that in the case of the helical spring
T → ∞ as d → 1. Thus, a helical spring is stiffer than a spring made of a perversion.
See Figure 11 for a comparison of the characteristics of springs formed by perversions
and helices.

3.4. Self-contact

The curvature and torsion of a helix are further limited by the diameter D of the rod.
The additional constraints arise from the conditions that (i) consecutive cross-sections
of the rod cannot overlap, and (ii) the helix can only be packed as close as self-contact
of successive turns of the helix allows. The constraint that consecutive cross-sections
of a rod do not overlap is expressed by constraining the curvature below the reciprocal
radius of the rod:

κ ≤ 2

D
. (72)

We note that this constraint applies to all points on a filament, and not just to helical
solutions. The second constraint, that successive turns of the helix do not intersect, is
derived here in terms of κ and τ , following the derivation in [62]. The helix and tangent
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vectors are given, as before, by

x(s) = 1

λ2
(κ cos(λs), κ sin(λs), τκs), (73)

t(s) = 1

λ
(−κ sin(λs), κ cos(λs), τ ). (74)

Consider a helical rod whose consecutive turns are in contact. Chose a point P1, taken
at s = 0. In order for the turns of the helix to touch each other, the minimum distance of
P1 to the points on the next turn of the helix must equal D. Let P2 be the point at which
this minimum distance is reached, and t1, t2 the tangent vectors at P1 and P2. Then

P1 =
( κ
λ2
, 0, 0

)
, (75)

t1 =
(

0,
κ

λ
,
τ

λ

)
. (76)

The vector P12 = P2 −P1 is perpendicular to both t1 and t2. Let�1 be the plane through
the point P1 and perpendicular to the tangent vector t1, and similarly for �2. Then P12

lies on the line of intersection of �1 and �2. The plane �1 is defined by the equation

κ y + τ z = 0. (77)

Let ξ be the value of the arclength s such that P2 = x(ξ). Since P2 lies on �1,

κ2

λ2
sin(λξ)+ τ 2

λ
ξ = 0. (78)

Setting |P12| = D, we have

2
κ2

λ2
(1 − cos(λξ))+ τ 2ξ 2 = D2λ2. (79)

Setting ξ ′ = λξ , equations (78) and (79) become

2 κ2(1 − cos(ξ ′))+ τ 2ξ ′2 = D2(κ2 + τ 2)2, (80)

κ2 sin(ξ ′)+ τ 2ξ ′ = 0. (81)

This system is solved for κ and τ ,

κ =
√
ξ 2[2(1 − cos(ξ ′))− ξ ′ sin(ξ ′)]

D2 (ξ ′ − sin(ξ ′))2
, (82)

τ = ±
√
ξ ′ sin(ξ ′)[2(cos(ξ ′)− 1)+ ξ ′ sin(ξ ′)]

D2 (ξ ′ − sin(ξ ′))2
. (83)

Equations (82–83) describe parameterically a curve in the κ−τ plane. This curve is seen
in Figure 12a. The curve defined by (82–83) is the solid curve and has two branches (for
each sign of τ ). The upper branch is the physically relevant branch. This curve represents,
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Fig. 12. Allowable values of the curvature and torsion of a helical rod. (a) The curves delimiting the
two conditions of nonintersection of successive turns of a helix and nonintersection of successive
cross-sections of a rod. (b) The allowed values in the κ − τ plane.

for a given diameter of the rod D, helices whose successive turns are in contact. Thus,
for a given value of τ , κ must lie to the left of this curve (or on the curve) in order that
successive turns of the helix do not overlap.

Combining this constraint with the local curvature condition κ ≤ 2/D, we obtain
a curve in the κ − τ plane, which separates the allowable helices from the forbidden
region, as seen in Figure 12b. We emphasize again that the condition that (κ, τ ) lie to the
left of the curve defined in (82–83) applies only to the asymptotic helices in a perversion
solution, whereas the condition κ ≤ 2/D applies to every point of an orbit which solves
the Kirchhoff equations.

Further, we note that the cusp points of Figures 12a–b represent the optimal helices
of Maritan et al. [63], that is, closely packed helices with minimal curvature.

For a rod with diameter D, the value at which the rod becomes tightly packed, or at
which self-contact prevents further coiling, gives a maximum value of the curvature of
the asymptotic helices (Fig. 13). In turn, this gives a minimum value of the tension T at
which the perversion reaches this state (see Fig. 14).

4. Reduction to the Center Manifold

Now that we have determined the type of asymptotic solutions allowed by the equations
and the qualitative behavior of the solutions, we turn to an analysis of the static Kirchhoff
equations (26–31). We treat these equations in the context of dynamical systems, in
which the arclength s plays the role of time. We calculate the center manifold on which
the perversion solution lies, and then compute the normal form of the center manifold
equations. This analysis of this simplified system provides us with a complete description
of the solutions close to the bifurcation point.

The linearized equations of system (26–31) around the fixed point X∗ = (0, 0, φ2, 0,
0, 0) representing a straight, untwisted rod under tension T = φ2, has linear eigenvalues

0, ±φ, and ±
√
φ2 − K 2

�
. (84)
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τ

κ

D=1D=2D=DoD=3

Fig. 13. The boundary of allowed values in the κ−τ plane for
four values of the diameter of the rod, along with the ellipse
of possible values of κ and τ in the asymptotic helices of a
perversion. The optimal helices lying on the ellipse of allowed
helices are marked with a dot. In this case D0 ≈ 2.24, that
is, the critical diameter is about twice the reciprocal of the
intrinsic curvature.

At the critical tension φ2
c = K 2/�, two eigenvalues coalesce and a Hamiltonian pitchfork

bifurcation occurs. This is the critical value below which the perversion solution exists.
A dynamical analysis of the Kirchhoff equations (17–19) was performed in [7], where it
was revealed that for φ < φc, the straight filament with intrinsic curvature is temporally
unstable. We can therefore study the phenomenon of perversion near this critical value
of the tension as a bifurcation problem.

We examine the bifurcation at φ = φc by using the first integrals (53) and (55) to
reduce the dimension of the system by two. The resulting system is then reduced to the
center manifold of the fixed point, and a simplified system is derived which governs
the dynamics. The perversion solution lies on the center manifold of the fixed point X∗.

1 2 3 4 5
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1 2 3 4 5
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φ2
min

κmax (a) (b)

Fig. 14. The maximum curvature (a) and minimum tension (b) of the asymptotic helices before
self-contact or overlapping occurs. The cusps in the graphs represent optimal helices. The dashed
curve in (a) is the plot of 2/D. The dashed curve in (b) is the plot of the tension with the curvature
set to 2/D. Values of the parameters are K = 1, � = 3/4,� = 1.
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Therefore, we look at solutions around the point X∗ for tension just below the critical
tension. First, we use the first integrals to reduce the dimension of the system by two. We
could, in principle, reduce the dimension by three, but this cannot be achieved globally.
Using (23) and (25), we solve for F1 and F3 in terms of F2 and κ. Substitution into the
system (26–31) yields the following reduced system:

F ′
2 = κ1

2
(I1 − κ1

2 −�κ2
2 − � κ3

2)

+ κ3(2I3 − 2� F2 κ2 + � κ3 (−I1 + κ1
2 +�κ2

2 + � κ3
2))

2(K − κ1)
, (85)

κ ′
1 = F2 + (�− �) κ2 κ3, (86)

κ ′
2 = 2I3−2�F2κ2+κ3(2K 2− I1�−2K (2−�)κ1+(2−�)κ1

2+��κ2
2+�2κ3

2)

2�(K −κ1)
,

(87)

κ ′
3 = − K

�
κ2 + (1 −�)κ1κ2. (88)

The solution representing a perversion solves (85–88) with I3 = 0. The first integral
I1 depends on the parameters by (53). Substituting these values of I1, I3 into (85–88),
we study solutions near the bifurcation, that is, for values of the tension just below the
critical tension. We introduce the distance to the bifurcation µ ≡ φ− φc = φ− K /

√
�,

where µ is taken to be small and negative, and consider the extended system

X′ = AX + f(X), (89)

where X = (F2, κ1, κ2, κ3, µ)
T ,

A =




0 K 2/� 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 −K /� 0 0
0 0 0 0 0


, (90)

and f contains only nonlinear terms in X. At the critical tension, µ = 0, the curvature
is zero, so I1 = 2K 2/�. For small µ, we expand I1 in µ:

I1 = 2 K 2

�
+ i1µ+ i2µ

2 + · · · , (91)

where the coefficients i j are functions of the parameters. We find a matrix S such that
S−1AS = J is in Jordan form. Setting X = SY, we obtain the transformed system

Y′ = JY + g(Y), (92)

where g(Y) = S−1f(SY), and

J =




0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 −K /

√
� 0

0 0 0 0 K /
√
�


,
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S =




0 0 0 −K /
√
� K /

√
�

0 0 0 1 1
0 0 −�/K 0 0
0 1 0 0 0
1 0 0 0 0


. (93)

System (92) can be written

W′ = J1 W + G1(W,Z), (94)

Z′ = J2 Z + G2(W,Z), (95)

where W = (y1, y2, y3)
T , Z = (y6, y7)

T , and

J1 =

0 0 0

0 0 1
0 0 0


, J2 =

(
− K√

�
0

0 K√
�

)
. (96)

Next, we derive the approximate equations for the flow on the center manifold. The
analytic center manifold tangent to the center subspace Z = 0 is

Z = H(W) = H(2)(W)+ H(3)(W)+ · · · ,
where H(k)(W) is a homogeneous polynomial of degree k in W obtained by the usual
technique of center manifold reduction [64], [65]. In our case, we have

H(2)(W) = �

2 K 3

(
K 2 y2

2 − K (2 +�− �)
√
� y2 y3 + (2 +�− �)� y3

2

K 2 y2
2 + K (2 +�− �)

√
� y2 y3 + (2 +�− �)� y3

2

)
, (97)

and the center manifold equations, to fourth order, are

x ′ = y(1 − α1x2 − β1 y2), (98)

y′ = x(−ψ + α2x2 + β2 y2), (99)

where x = y2 and y = y3, and the third equation reads µ′ = 0. The constants ψ , αi , and
βi are positive functions of the parameters (for µ < 0):

α1 = �

K 2
(1 −�), (100)

β1 = �2

K 4
(1 −�)(2 +�− �), (101)

ψ = −1

2
(i1µ+ i2µ

2), (102)

α2 = 1

2�
(4 − 3�), (103)

β2 = �

2�K 2
(2�2 − (8 +�)� + 2(4 −�2)). (104)
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5. Analysis of the Reduced System

5.1. The Symmetric Case

In the symmetric case,� = 1, when the principal moments of inertia of the cross-section
are equal (e.g., when the cross-section is circular), the center manifold equations (98–99)
simplify to

x ′ = y, (105)

y′ = x[−ψ + αx2 + βy2], (106)

or, equivalently,

x ′′ = x[−ψ + αx2 + β(x ′)2], (107)

where α = α2, β = β2, with � = 1. The fixed points of the system are

(0, 0),

(√
ψ

α
, 0

)
, and

(
−
√
ψ

α
, 0

)
. (108)

In terms of the original variables, the first fixed point represents a straight filament,
while the second and third represent helices with equal but opposite handedness. The
perversion is thus represented by a heteroclinic orbit connecting the second and third
fixed points. Notice that ψ(µ = 0) = 0, so that the fixed points representing the helices
bifurcate from zero as µ goes through zero. Again, as the tension decreases through φ2

c ,
two asymptotic helices are created.

The system (105–106) has the following first integral:

I =
[

y2 + α

β
x2 + α − βψ

β2

]
e−βx2

. (109)

On the heteroclinic orbit representing a perversion, the first integral I must be constant
on the two points it connects, i.e.,

I
(

x =
√
ψ /α, y = 0

)
= I

(
x = −

√
ψ /α, y = 0

)
. (110)

This implies that

I = α

β2
e−βψ /α. (111)

We can thus solve for y and obtain a parameterization of the solution representing a
perversion:

y = ±
[
α

β2

(
eβ(x

2−ψ /α) − x2
)

+ βψ − α

β2

]1/2

, (112)

where x(s) solves (107) with the boundary conditions x → ±
√
ψ

α
as s → ±∞.

Once the heteroclinic orbit is found, we can transform the solution back to the orig-
inal variables, κ and x. We then have an approximation to the solution representing a
perversion. In Figure 15, the curvature and twist density obtained in this manner are
shown and are compared with the exact fixed points. The corresponding filaments are
shown in Figure 16.
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Fig. 15. Comparison of solutions on the center manifold with exact fixed points, (� = 1, � =
3
4 , K = 2). The dashed curve represents the part of the ellipse of fixed points. (a) The heteroclinic
orbit mapped to curvature and twist density. Values ofµ are −.1,−.05, and −.01. The stars are the
exact fixed points for the given values of the parameters, for each given value of µ, of the original
system representing helices. Circles are the fixed points of the center manifold equations, mapped
back to the original variables. (b) The curve of fixed points from the center manifold. The solid
curve consists of fixed points of the center manifold equations, mapped to the original variables.

5.2. Asymmetric Cross-Sections

In the general case, where the cross-section is not symmetric (1 �= � ∈ R
+), the reduced

system (98–99) on the center manifold cannot be integrated. Nevertheless, we can further
simplify it by a normal form computation [64]. We apply a near-identity transformation

W = C + P(C), (113)

where P(C) is a polynomial, beginning with quadratic terms, chosen to simplify the
equation for C. In our case, since the Jacobian matrix at the bifurcation (ψ = 0) is not
semisimple, the normal form is not unique [66]. However, we can choose P(C) in such
a way as to eliminate all nonlinear terms in the first equation. Choosing

P(C) =




0

C2� (K 2(2�2 − �(8 +�)+ 2(4 − 2�+�2))C2
2

−12�(2 +�− �)(1 −�)�C3
2)/(12 K 4�)

�(2�2 − �(8 +�)+ 2(4 −�2))C2
2 C3/(4 K 2�)


, (114)

1
2 3

Fig. 16. The filaments corresponding to the heteroclinic orbits in Figure 15.
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Fig. 17. A heteroclinic orbit in the asymmetric case. � = 0.5, � = .75, K =
2, µ = −0.1. The dashed curve is the curve of fixed points representing helices.
Stars are the exact fixed points for the given values of the parameters. Compare
with Figure 15.

and dropping order four and higher terms, the equation for C becomes

x ′ = y, (115)

y′ = x(−ψ + αx2), (116)

or, equivalently, x ′′ = x(−ψ + αx2), where x = C2, y = C3, and ψ, α = α2 are as in
(102–104). There is a heteroclinic orbit connecting the two fixed points ±√

ψ /α. The
fixed points, as before, represent helices, and the heteroclinic orbit a perversion (see
Fig. 17), given by

x(s) =
√
ψ

α
tanh

(
s

√
ψ

2

)
, y(s) = ψ√

2α
sech2

(
s

√
ψ

2

)
. (117)

An explicit approximation to the perversion solution as a function of s correct to third
order can be obtained by writing this solution in terms of the original variables.

Note that there is no bifurcation of the system (115–116) at � = 1. The behavior of
rods in this case is similar for rods with symmetric and slightly asymmetric cross-sections.
This contrasts with the case studied in [49], in which a rod without intrinsic curvature
is twisted at its ends. In that case, a bifurcation occurs at � = 1, and the behavior
is markedly different in the symmetric and asymmetric cases. In the case of a rod with
intrinsic curvature, the symmetry is already broken by the addition of intrinsic curvature.
Thus, the addition of a nonsymmetric cross-section does not change the asymmetry of
the system, and hence has no effect on the qualitative behavior of solutions.
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6. The General Reduction

We can obtain a more general picture of the dynamics that includes all bounded orbits
on the center manifold around X∗ by deriving the center manifold and normal form
equations of the entire system (26–31) without using the first integrals. In this setting, we
can show that two families of homoclinic orbits exist. These homoclinic orbits collapse
to a pair of heteroclinic orbits, the perversion solutions. In addition to yielding the
perversion solution as the collapse of homoclinic orbit, we also discover families of
periodic orbits. The normal form gives a picture of the full dynamics in a simplified three-
dimensional system.

6.1. Reduction to the Center Manifold

We proceed as in the previous section, first reducing to a center manifold, and then
deriving the normal form equations. Setting X̃ = (F1, F2, F̃3, κ1, κ2, κ3, µ)

T , where
F̃3 = F3 − φ2, µ = φ − φc, as before, we can write the static Kirchhoff equation as the
extended system

X̃′ = AX̃ + h(X̃), (118)

where the last equation reads µ′ = 0, and h(X̃) contains only nonlinear terms. The
origin, X̃ = 0, represents the straight rod at the critical tension. Transforming the linear
part into Jordan form by X̃ = SY where S−1AS = J is in Jordan form, we obtain

Y′ = JY + G(Y), (119)

where

J =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −K /

√
� 0

0 0 0 0 0 0 K /
√
�



. (120)

This system can be written

W′ = J1W + G1(W,Z), (121)

Z′ = J2Z + G2(W,Z), (122)

where W = (y1, y2, y3, y4, y5)
T and Z = (y6, y7)

T . The eigenvalues of J1 are all zero,
while the eigenvalues of J2 are ±K /

√
�. The analytic center manifold tangent to the

center subspace Z = 0 is Z = H(W) = H(2)(W) + H(3)(W) + · · · ,H(k)(W) being a
homogeneous polynomial of degree k in W. As before, we solve for H(2)(W),

H(2)(W) =
�(K 4 y2

2+(6−3�+4�)(�2 y4
2−K�

3
2 y3 y4)+K 2 �((2−�+�)(y3

2+y2 y4−K�− 1
2 y2 y3)+�y2 y4))

2 K 5

�(K 4 y2
2+(6−3�+4�)(�2 y4

2+K�
3
2 y3 y4)+K 2 �((2−�+�)(y3

2+y2 y4+K�− 1
2 y2 y3)+�y2 y4))

2 K 5


, (123)
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and the center manifold equations are

W = J1W + f(W)+ O(|W|4), (124)

where f(W) = G1(W,H(2)(W)). We examine solutions near Y = 0. We drop the order
four and higher terms, and examine the resulting equation.

6.2. Normal Form Derivation and Analysis

As before, we make the near-identify transformation W = C + P(C). Choosing

P(C) =


0
�

18K 6�
(C2(2K 4(2�2 − �(8 + 3�)+ 2(4 +�+�2))C2

2 + 3K 2�(24 + 15�2

+ 28�− 2�2 − �(42 + 26�− 3�2))C2C4 − 3�(K 2(6 + 6�2 + 22�
− 2�2 − 6�3 − �(15 + 17�− 6�2))C3

2 + 6�(6 − 3�
+ 4�)(1 −�)�C4

2)))

− �
6K 4�

(C3(2K 2(−8 − 2�2 − 5�+�2 + �(8 + 3�))C2
2 + �(6 + 6�2

+ 10�+ 4�2 − �(15 + 11�))C3
2 + 6(1 − �)�(−6 + 3� − 4�)C2C4))

1
6 K 4�

(6K 4(−1 + �)C2
3 + 2K 2�(10 + �2 + 7�− 2�2 − �(7 + 3�))C2C3

2

− 2K 2�(�+�2 − 2 − �(1 + 3�− �))C2
2C4 + 3�2(6 − 3�

+ 4�)(1 −�)C3
2C4)

�
2 K 2 C2 (−2��C4 + C2 (−K 2 + 2 K

√
� C1 + � C5))




,

(125)

the equation for C becomes

C ′
2 = C3, (126)

C ′
3 = C4, (127)

C ′
4 = C3(ψ + αC2

2 − βC2
3), (128)

C ′
1 = C ′

5 = 0, (129)

where terms of order four and higher have been neglected. C1 isµ, and since C5 is constant
it is treated as a parameter. The normal form (126–129) is then a third-order system. The
constants α and β are positive, O(1) functions of the parameters. The constant ψ is a
function of the parameters and the bifurcation parameter µ:

α = 3

2�
(4 − 3�) , (130)

β = �

3K 2

(
�2 − 2�(2 + 3�)+�2 + 10�+ 4

)
, (131)

ψ = 2µK + µ
√
� + c5

√
�√

��
= φ2 − φ2

c + c5

�
. (132)
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The following rescalings

C2 = 1√
β

x, C3 =
√
α

β
y, C4 = α

β3/2
z, (133)

s =
√
β

α
t, ψ = α

β
ψ̃, (134)

transform (126–129) into

x ′ = y, (135)

y′ = z, (136)

z′ = y(ψ̃ + x2 − y2), (137)

or, equivalently,

x ′′′ = (x ′)2(ψ̃ + x2 − (x ′)2). (138)

This normal form associated with a triple zero Jordan block is a particular case of the ζ 3

normal form defined in [66].

6.3. Normal Form Analysis

The system (135–137) has some remarkable properties which allow for a complete
description of the orbits. Indeed, there exists a pair of first integrals (m1,m2) for this
system given by(

m1

m2

)
=
(

cos(
√

2x) − sin(
√

2x)
sin(

√
2x) cos(

√
2x)

)(
y2 − x2 + 1 − ψ̃√

2(z − x)

)
. (139)

These two first integrals can be used to integrate explicitly the equation of motion. Let
�(x) = ψ − 1 + m1 cos(

√
2x)+ m2 sin(

√
2x), then

y = ±
√

x2 +�(x), (140)

z = 1

2
�′(x)+ x, (141)

where x(t) solves x ′ = ±
√

x2 +�(x). In order to understand the geometry of the
solutions, we note that the x-axis is a line of fixed points, and we consider the polynomial
first integral

I = m2
1 + m2

2 − (1 − ψ̃)2,

= −4xz + y4 + 2z2 + y2[2(1 − ψ̃)− 2x2] + x2(2ψ̃ + x2), (142)

and the surfaces SC = {(x, y, z) ∈ R
3|I = C}. For fixed values of ψ̃ , we can describe

the dynamics on the surface SC for increasing values of C .

• For C < −ψ̃2, SC has no intersection with the x-axis and there is no localized solution.
• For −ψ̃2 < C < 0, there are four fixed points on SC and there is a pair of homoclinic

orbits surrounding an open set of periodic orbits.
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• For C = 0, two of the fixed points coalesce, and again there is a pair of homoclinic
orbits and two families of periodic orbits.

• For 0 < C < C̃ , there are two homoclinic orbits to the two fixed points on SC and an
open set of periodic orbits.

• For C = C̃ , the two homoclinic orbits collapse to a pair of heteroclinic orbits and there
is no periodic orbit on SC̃ . The value C̃ is obtained by using the parameterization of
the orbits in terms of m1,m2 and is found to be

C̃ = 2x2
1

sin
√

2x1

− (1 − ψ̃)2, (143)

where x1 is the intersection point of SC̃ with the x-axis, that is

x2
1 + ψ̃ − 1 +

√
2x1 cot(

√
2x1) = 0. (144)

Normal form dynamics are seen in Figure 18. The pair of homoclinic orbits forµ = −.1
is seen in Figure 19. These orbits connect helices with the same handedness, the total
twist does not vanish, and these are not perversions. The family of heteroclinic orbits is
seen in Figures 21 and 22.

7. Numerics

The major limitation of the method we have described for computing the heteroclinic
orbits representing perversions is that the normal form approximation is only valid in
a neighborhood of the point X∗ = (0, 0, φ2, 0, 0, 0). As one can observe in Figure 15,
the approximation loses its validity as κ and τ increase, or equivalently, as the applied
tension decreases. In this section, we compare the approximate solutions with solutions
computed numerically. The strategy we use in computing the orbits is to first find an orbit
using a shooting method, and then to find the remaining orbits by continuation, using the
software package AUTO. In computing the first orbit by shooting, we place one initial
point on the unstable manifold of one fixed point and compute forward, and another
initial point on the stable manifold of the other fixed point and compute backward. Then
we adjust the initial points until the two orbits match. We are looking for the heteroclinic
connection between the fixed points

X±(κ) = (±γ κτ, 0, γ τ 2, κ, 0,±τ). (145)

The linear eigenvalues of these fixed points are 0,±σ ± iν. Therefore, the stable and
unstable manifolds have dimension 2, and the tangent subspaces are spanned by the stable
and unstable eigenvectors v(s)± , v(u)± and their complex conjugates. Here, v± denotes an
eigenvector of the Jacobian at the fixed point X±. Thus, we compute two initial value
problems, placing our initial conditions at

X(0) = X+ + ε[Re(v(u)+ ) cos(θ+)+ Im(v(u)+ ) sin(θ+)], (146)

X(0) = X− + ε[Re(v(s)− ) cos(θ−)+ Im(v(s)− ) sin(θ−)], (147)
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Fig. 18. Normal form dynamics for various values of C .

and computing forward and backward, respectively, at time T . The value of ε is taken to
be very small, typically 10−5, so that the initial conditions lie close to the unstable and
stable manifolds. There is no family of heteroclinic orbits connecting each pair of fixed
points. Rather, there is a unique pair of values of θ± such that the orbits connect. The
angles θ± and T are then adjusted until the two orbits coincide. The three first integrals
I1, I2, I3 are used as diagnostics to check the accuracy of the numerical solutions. The
results of one computation are seen in Figure 20.

Once we have computed one heteroclinic orbit, we use this as a starting point to
compute by continuation the remaining orbits. We use the HomCont routines in the
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Fig. 19. A pair of homoclinic orbits from the normal form in the curvature-torsion
plane together with the corresponding filaments. Note that these orbits connect
helices with the same handedness.
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Fig. 20. Comparison of numerical and normal form solutions. Shown are a numer-
ical solution connecting the actual fixed points labeled by *’s, and the normal form
approximation connecting the approximate fixed points labeled by a black dot. Values
of the parameters are K = 1,� = 1, � = 0.75, µ = −0.1.
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Fig. 21. Family of heteroclinic orbits. Projections in the κ − τ plane. The thick
curves represent orbits computed by shooting, the thin curves are those computed
by continuation. Values of the parameters are K = 1,� = 1, � = 0.75.
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Fig. 22. Family of heteroclinic orbits. Perversions for varying values of tension. Values of the
parameters are K = 1,� = 1, � = 0.75.
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AUTO 97 package [67] to continue these orbits, and compute the family of heteroclinic
orbits connecting the points X±(κ) for 0 < κ < K . Figure 22(a) shows the family of
orbits computed in this manner, projected onto the κ − τ plane. Figure 22(b) shows a
family of perversion solutions.

8. Conclusions

In the world of elastic filaments there are two fundamental instabilities responsible for
producing complex three-dimensional structures. The first one is the well-known coil-
ing instability. It transforms local twist into writhe and produces a large coiled structure
whose handedness is inherited from the handedness of the twist. In this paper, we studied
the second type of instability whereby a change in the curvature deficit (the difference
between local and intrinsic curvatures) produces a global change of the structure by cre-
ating structures with no preferred handedness. In the context of the Kirchhoff equations
for elastic rods, perversion is modeled as a heteroclinic orbit connecting two fixed points
representing asymptotic helices. We found the relationship between the tension applied
at the ends of the filament and the curvature of these helices. We identified both the
critical value of the tension below which a straight rod with intrinsic curvature becomes
unstable and is replaced by a perversion and the specific value of the applied tension such
that the asymptotic helices are in self-contact. Therefore, we computed the upper and
lower value of the applied tension for which a perversion can exist. Since the effect of the
intrinsic curvature is to break the symmetry of the elastic properties of the cross-sections,
a geometric asymmetry in the cross-section plays no role in the qualitative picture given
here. Likewise the presence of a small intrinsic twist does not modify the overall qual-
itative picture given here. An intriguing problem arises when both intrinsic curvature
and intrinsic twist are sufficiently large as to create an instability. We expect that there
should be a subtle interplay between the two types of bifurcations around these values.

The new structure formed through this instability and composed of two helices con-
nected by an inversion is a twistless spring. We computed the characteristic of this spring
and showed how it deviates from Hooke’s law. The functional advantage for a tendril or
any similar structure to form a perversion appears clearly. A relatively fragile filament
can form a perversion and create a spring that can withstand much heavier loads before
breaking. This observation was first made by Darwin [14], to whom we leave the last
word: “I have more than once gone on purpose during a gale to watch a Bryony growing
in an exposed hedge, with its tendrils attached to the surrounding bushes; and as the thick
and thin branches were tossed to and fro by the wind, the tendrils, had they not been
excessively elastic, would instantly have been torn off and the plant thrown prostrate.
But as it was, the Bryony safely rode out the gale, like a ship with two anchors down,
and with a long range of cable ahead to serve as a spring as she surges to the storm.”

Appendix A: Helical Filaments Are Twistless

Proposition A.1. Consider the static Kirchhoff equation (17–19) with intrinsic curva-
ture κ(u) = K d1 + τ0 d3. Then (i) the only solutions with constant curvature and torsion
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are twistless helices (i.e., ζ ′ = 0); (ii) constant solutions are either twistless helices or
twisted straight rods.

In other words, the set of fixed points of (17–19) with κ(u) = K d1 + τ0 d3 is exactly the
set of twistless helices and twisted straight rods.

Proof. Suppose, first, that the cross-section of the filament is symmetric, so that� = 1.
Substituting κ = (κ sin(ζ ), κ cos(ζ ), τ + ζ ′), κ(u) = K d1 + τ0 d3, where κ, K , τ , and
τ0 are constant, into the original static equations (17–19), we have the system

F1
′ = −κ cos(ζ ) F3 + F2(τ + ζ ′), (148)

F2
′ = κ sin(ζ ) F3 − F1(τ + ζ ′), (149)

F3
′ = κ(cos(ζ ) F1 − sin(ζ ) F2), (150)

κ cos(ζ ) ζ ′ = F2 + κ cos(ζ )(�τ0 + (1 − �)(τ + ζ ′)), (151)

−κ sin(ζ ) ζ ′ = −F1 − κ � τ0 sin(ζ )+ (K − κ(1 − �) sin(ζ ))(τ + ζ ′), (152)

ζ ′′ = −κ K

�
cos(ζ ). (153)

Solving (148–153) for F1 and F2, we obtain

F1(s) = τ K + K ζ ′ + [τ κ (� − 1)+ κ � (ζ ′ − τ0)] sin(ζ ), (154)

F2(s) = κ[τ(� − 1)− � (τ0 − ζ ′)] cos(ζ ). (155)

Differentiating (154), equating the result with (148), and using (153), we obtain

cos(ζ )[K 2 −� τ 2 +�2 τ 2 + κ K � sin(ζ )−� F3(s)+�2 ττ0 +�2 τ ζ ′] = 0. (156)

Either cos(ζ ) = 0 or the other factor of the LHS of the previous equation is zero.
Differentiating this factor with respect to s, and using (153, 154, 155) again, we obtain

cos(ζ ) = 0. (157)

This implies that, since κ ≥ 0, sin(ζ ) = 1. Using this result in (148–153), we can solve
for F and κ, to obtain

κ = κd1 + τd3, (158)

F = γ τκ, (159)

where

γ =
(

K

κ
− 1 + �

(
1 − τ0

τ

))
. (160)

In the asymmetric case (� �= 1), substituting κ = (κ sin(ζ ), κ cos(ζ ), τ + ζ ′), κ(u) =
K d1 + τ0 d3, where κ, K , τ , and τ0 are constant, into the original static equations (17–
19), we solve, as before, for F1 and F2 in terms of ζ . Substitution into (17) provides us
with the following equation:

cos(ζ )A(ζ, ζ ′, F3) = 0, (161)
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where the form of A is omitted. As before, we proceed by eliminating all possibilities
but cos(ζ ) = 0. If cos(ζ ) �= 0, then we differentiate the second factor in the previous
equation. This gives us an equation in ζ, ζ ′ and sin(ζ ). We then solve for ζ ′ and subtract
the result of solving for ζ ′ in the sixth equation of (17–19). We thus arrive at an equation
of the form

4∑
n=0

an sinn(ζ ) = 0, (162)

where the an’s are constants in s. A contradiction is then reached if ζ is not constant,
since not all of the coefficients an are zero. It must be, then, that ζ ′ = 0, and substituting
this result into (148–153), we get (158–159) again.

For the second part of the statement, we note that if κ′ = 0, then

d

ds

1

2
κ2 = d

ds

1

2
(κ2

1 + κ2
2 ) = κ1κ

′
1 + κ2κ

′
2 = 0, (163)

so that curvature is constant. We thus have

κ ′
1 = κ cos(ζ )ζ ′ = 0 = −κ sin(ζ )ζ ′ = κ ′

2. (164)

This implies that either κ = 0 (zero curvature—a straight rod) or ζ ′ = 0 (zero twist). In
the case ζ ′ = 0,

κ ′
3 = τ ′ = 0, (165)

so that torsion is constant. In this case the rod is a twistless helix. In the case of zero
curvature the rod may be twisted.
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