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Abstract – In many cylindrical structures in biology, residual stress fields are created through
differential growth. In particular, if the outer and inner layers of a cylinder grow differentially,
parts of the cylinder will be in a state of axial compression and other parts will be in tension.
These tissue tensions change the overall material properties of the structure. Here, we study the
role of tissue tension in the overall rigidity and stability of the cylinder. A detailed analysis, based
on nonlinear elasticity, of the effect of tissue tension on the mechanical properties of growing
cylinders reveal a subtle interplay between geometry, growth, and nonlinear elastic responses that
help understand some of the remarkable properties of stems and other biological tissues.
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Introduction. – In many biological tissues, due to a
combination of genetic, chemical, and mechanical factors,
different parts of the tissue experience different growth
rates. The net result of this differential growth is that
the tissue may be under stress even when unloaded.
These residual stresses are believed to play an important
role in morphogenesis and in changing effective material
properties. Following the work of Fung [1] on arteries,
physiologists have established that arteries are residually
stressed. A small disk of artery would naturally open
when cut transversally, and the “opening angle” of the
sliced disk is a central experimental and theoretical
feature of arterial mechanics for which the associated
stresses are known to play a fundamental role in the
regulation of transmural tractions [2]. While the role of
transverse differential growth (along the cross-section)
in cylindrical structures is well appreciated, many such
structures experience also axial differential growth.
The effect of axial differential growth on the mechanical

properties of a cylindrical structure is the main focus of
this letter. It can be illustrated by a simple experiment
with a stalk of rhubarb (Rheum rhabarbarum) and a
kitchen peeler. If you carefully peel a strip of the stalk’s
outer layer and attempt to place it in its original position,
you may notice that the strip has shrunk in length by a
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Fig. 1: Tissue tension in rhubarb. The middle segment of a long
stalk of rhubarb was cut. This segment, of initial length 20 cm,
was then peeled. The peeled strips are now shorter (by about
2–4%) and the pith is longer (by about 6%). The mutual tissue
tensions between inner and outer layers have been relieved.

noticeable amount. If you peel the other outer layers, you
may realize that the inner part (the pith) is extending in
length. This simple experiment shows that the outer wall
is in a state of axial tension while the pith is in a state
of axial compression (see fig. 1). The possible mechanical
role of these stresses and combination of tissues can be
appreciated by realizing that the peeled rhubarb has lost
most of its rigidity; so much so that it now buckles
under its own weight. Similarly if the rhubarb is cut
along its axis, it will tend to bend outwards as part
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of the elastic stress is relieved when the pith elongates
and the outer tissues shorten by curving. The mutual
tension between outer and inner tissues in rhubarb and
its possible role in plant mechanics was understood as
early as 1848 by Brucke, in 1857 by Sachs, and explored in
detail by Hoffmeister in 1867: “We have here the case of
an elastic stiff body consisting of two parts, each in a high
degree flexible and by no means stiff; only in their natural
connection do the epidermal tissue and internal tissues
together form an elastic rigid body”([3], p. 216). Following
these early works, tissue tension became a central topic
of interest in plant physiology and played an important
role in the discovery of auxin as a growth hormone [4]
through the so-called “curvature pea-test”. As auxin acts
differently on different tissues, the respective growth of the
epidermis and pith of Pea hypocotyl can be controlled by
varying the auxin concentration and explicitly tested by
slicing the pea along its axis and measuring the resulting
stem curvature. However, with the advent of genetics and
biochemistry, mechanical aspects of plant development
fell out of fashion. In recent years, the study of tissue
tension has regained interest [5] and the role of tissue
tension in growth regulation has become a controversial
topic [6]. Note also that demonstrating the existence of
residual stresses in a growing plant structure does not
indicate conclusively the origins of these stresses. Here,
following many authors [7–9], we attribute these stresses
to the differential extension of the cell walls in outer and
inner layers, creating an irreversible change in the resting
lengths of both tissues. The fact that these resting lengths
may evolve after a cut has been made depending on the
solute concentration of a bath in which the tissues are
immersed clearly indicate that there is also a hydraulic
component to the problem. However, from an analysis
standpoint, the origin of these stresses is not directly
relevant to our conclusions.
From a mechanical perspective, experiments clearly

establish that the outer tissue plays a substantial role
in the overall rigidity (accounting for as much as 70%
of the rigidity for less than 10% of the cross-sectional
area [10]). This property could be attributed to the
large difference in stiffnesses between the outer and inner
layers (whose ratio is in excess of 30 [11]) and not to
residual stresses [12]. Similarly, many other cylindrical
structures, such as tree trunks, roots, and arteries [13]
also develop axial tissue tension whose effect on the
mechanics is not yet understood. In particular, for trees,
apart from primary vertical growth, a secondary cambial
radial growth takes place. One of the mechanical function
of cambial growth is to allow branches and trunks to
gain in girth but also to allow the overall tree structure
to attain a mechanical balance. Aside from mechanical
balance, even a straight trunk, containing only regular
formed wood, is highly pre-stressed. The net mechanical
effect of this combined growth is a rather complicated
stress field with a combination of tension and compression
wood [14]. The mechanism generating residual stresses

during the differentiation process of the wood cells and
its mechanical function remain elusive. The purpose of
this letter is to study the development of residual stress in
differential axial growth of biological cylindrical structures
and to elucidate its possible mechanical role in modifying
material properties.

Model. – We model the biological structure as a
cylindrical shell composed of two material layers with
different growth and elastic properties. We are trying to
understand the specific effect of axial growth, therefore,
we neglect the possible effect of fiber reinforcement and
anisotropy by assuming that the material is hyperelas-
tic, incompressible, homogeneous, isotropic and subject to
growth along the axial direction (taken to be the z -axis).
Since typical elongations or compressions can be as much
as 40% of the original length [15], the material should be
considered as being in large deformation and a correct
description requires therefore the machinery of nonlinear
elasticity. Growth is included in the model as a multiplica-
tive decomposition of the growth tensor [16]. Since the
emphasis here is on the mechanical consequences of growth
and not on the regulation of growth, we take growth as
a fait accompli by postulating that each cylindrical shell
has grown axially by a given amount. We can then use
the stability analysis of the resulting residually stressed
cylindrical shell to obtain an effective Young modulus and
explain the observed rigidity of the structure.
More precisely, the deformation of each cylindrical shell

is given by xi,o =χi,o(Xi,o), where Xi,o = (Ri,o,Θi,o, Zi,o)
and xi,o = (ri,o, θi,o, zi,o) describe the material cylindrical
coordinates of a point in the reference and current config-
urations, and the subscripts i, o denote the inner cylinder
(whose initial radii are A and B) and the outer cylinder
(with initial radii B and C ). Let Fi,o =Grad(χi,o) be
the geometric deformation gradient. We assume that
the gradient tensor is the product of a growth tensor
Gi,o =diag(1, 1, γi,o), describing a constant axial growth
in cylindrical coordinates, by an elastic tensor Ai,o so that
Fi,o =Ai,o ·Gi,o.
It is important to comment here about this multiplica-

tive decomposition. The deformation is decomposed into
two parts that can be understood as follows. First, a
virtual growth deformation takes place where each cylin-
der is allowed to grow without constraint. This leads to an
unstressed configuration where the two grown cylinders
may have different lengths and can interpenetrate each
other. With our particular choice of growth tensor the
new length of the cylinders are, respectively, Lγi,o in this
new unstressed configuration. For γi �= γo, the integrity
of the body is not preserved during this deformation.
Second, we apply an elastic deformation from this new
incompatible configuration to a final configuration where
the boundary conditions between the cylinders and on
the cylinder faces are satisfied. Essentially, we stretch
one cylinder and compress the other one. The overall
deformation F is compatible (in the sense that it is the
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gradient of a map χ) but individuallyA andG are incom-
patible. Within this modeling approach of growth, this
incompatibility is directly related to the residual stress
(the stress necessary to preserve the body integrity during
the deformation). Note also that the elastic deformation
takes the body from the virtual grown configuration to its
final configuration. This deformation is fully determined
by the tensor A and as a consequence, the formulation of
the elastic energy and the stresses are in terms of A.
Each material is characterized by a strain energy func-

tion Wi,o =Wi,o(Ai,o). Here, following existing models for
arteries [13] and the data available for stem properties [11],
we adopt a model where the inner cylinder is a neo-
Hookean material and the outer layer is a Fung material
with strain-stiffening properties

Wi =
μi
2
(I1− 3), Wo =

μo
2ν

[
eν(I1−3)− 1

]
, (1)

where I1 = α
2
r +α

2
θ +α

2
z is the first principal invariant of

the Cauchy-Green strain tensor, the principal stretches
αr, αθ, αz are the square roots of the principal values
of AAT, and ν controls the strain-stiffening property of
the outer layer (with neo-Hookean limit as ν→ 0) which
relates elastic deformation to the Cauchy stress tensor
T= (tr, tθ, tz) by

Ti,o =Ai,o ·
∂Wi,o
∂Ai,o

− pi,o1, (2)

where pi,o is the Lagrange multiplier associated with
the incompressibility constraint. The parameters μi,o are
elastic moduli. They define the overall stiffness of the
material. For small deformation, α→ 1, these elastic
moduli can be related to the Young moduli of each cylinder
by Ei,o = 3μi,o. However, such identification does not hold
in large deformation where the stiffness depends on the
size of the deformation itself.
The equation for mechanical equilibrium is given by

div(Ti,o) = 0, where the divergence is taken in the current
configuration. The boundary conditions are: zero normal
traction on the inner and outer boundaries r= a, c and
equal but opposite traction at r= b. The top and bottom
have resultant load [17], N = 2π

∫ c
a
rtz(r)dr= 0.

Before we consider the stability and rigidity of the
cylindrical shell, we compute explicitly the residual
stresses created through growth by assuming that in the
deformation, the cylinder retains its cylindrical symmetry,
that is

Fi,o =diag

(
dri,o
dR
, ri,o/R, λi,o

)
(3)

in cylindrical coordinates and the elastic tensor is

Ai,o =diag(1/(αi,oβi,o), αi,o, βi,o). (4)

The three diagonal entries of A correspond to αr, αθ and
αz. For computational convenience, we have introduced
two variables αi,o, βi,o, which denote, respectively,

Fig. 2: Tissue tension in cylindrical shells.

the angular and axial stretch or compression from the
unstressed grown state to the final state. Since both
materials are assumed to be incompressible, the deforma-
tion in the radial direction is specified by the condition
det (Ai,o) = 1. Note that since F=A ·G, the elastic
variables α, β and the geometric variables r, λ are not
independent and we have

αi,o = ri,o/R, λi,o = γi,oβi,o. (5)

The radial stress is given by

tr(R) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ R

A

∂Ŵi
∂αi

1

βiαiR
dR, R�B,

−

∫ C

R

∂Ŵo
∂αo

1

βoαoR
dR, B �R�C,

(6)

where Ŵi,o(αi,o) =Wi,o(1/(αi,oβi,o), αi,o, βi,o). The axial
stress is tz(R) = tr +βW3−W1/(αβ), where W1 and
W3 are the derivative of W with respect to its first
and third variables and the two free parameters a and
λ are obtained, for a given axial load N, by solving
simultaneously the two remaining boundary conditions

tr(C) = 0, and N = 2π

∫ c

a

rtz(r)dr= 0. (7)

It is particularly interesting to consider the stresses
created in the material in the absence of loads, N = 0
for various ratio of stiffnesses. In fig. 2, we show the
axial stress profile and overall inner layer stretch for
various ratio of stiffnesses and different strain stiffening
properties. As the strain-stiffening ν is increased, we note
that large stress gradients are created in the outer layer.
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Stability analysis and stem rigidity. – We can now
determine the overall rigidity of our grown cylinder. Since
the cylinder is in large deformation and supports residual
stress, the traditional notion of Young modulus does not
apply directly and an explicit computation of the rigidity
is not possible. However, we can perform the following
thought experiment to obtain an effective Young modulus.
Consider the grown cylinder and measure all its initial
geometric parameters (inner and outer radii a0 and c0 and
length l0 being the geometric parameter for zero load) and
subject it to a normal load N until it buckles at Ncrit. This
critical value of the axial stress Pcrit =Ncrit/π(c

2
0− a

2
0) can

be used to compute the effective Young modulus, defined
as the Young modulus of an equivalent homogeneous
elastic cylinder with no residual stress and buckling with
the same axial stress, that is

Eeff =
4Pcrit
π2σ2

, (8)

where σ=
√
c20+ a

2
0/l0 is the inverse of the slenderness

ratio. This definition is valid as long as the cylinder is
sufficiently slender (σ sufficiently small), so that the Euler
buckling formula is valid (see below). Therefore, in order
to obtain an estimate of the cylinder rigidity through
an effective Young modulus, one needs to obtain the
critical buckling load, that is to compute the stability
of the grown cylinder under applied loads. To do so,
we consider perturbation around the grown cylindrical
solution χ(0). That is, χ=χ(0)+ ǫχ(1), where χ(1) =
(u(r, θ, z), v(r, θ, z), w(r, θ, z)). In terms of the geometric
deformation tensors, we have F= (1+ ǫF(1)) ·F(0), with
F(1) = grad(χ(1)) and A= (1+ ǫA(1)) ·A(0). Similarly, we
expand the Cauchy stress T=T(0)+ ǫT(1)+O(ǫ2). The
expansion of the constitutive equation leads to [18]

T(1) = L :F(1)+F(1) ·A(0) ·W
(0)
A
− p(1)1,

L :F(1) =A(0) ·W
(0)
AA
:F(1) ·A(0),

where T(0) is the Cauchy stress associated with the
solution χ(0), p= p(0)+ ǫ p(1), L is the instantaneous
elastic moduli tensor (given explicitly in ([19], p. 412)),

and W
(0)
A
, W

(0)
AA
are the first and second derivatives of

W with respect to A evaluated on A(0). The stabil-
ity analysis proceeds by solving div(T(1)) = 0 together
with the first-order incompressibility condition, tr(F(1))≡
ur +(u+ vθ)/r+wz = 0, and the boundary conditions
obtained as the expansions to first order of the global
boundary conditions (not shown explicitly here). This
leads to a set of eight partial differential equations for the

eight variables ui,o, vi,o, wi,o, p
(1)
i,o in the inner and outer

layers which can be further simplified to a boundary-
value problem for a set of differential equations in the
variable r by Fourier expanding the dependance in θ
and z, that is: u= f(r) cosmθ cos ηz, v= g(r)sinmθ cos ηz,
w= h(r) cosmθ sin ηz, p(1) = k(r) cosmθ cos ηz. For each
mode m, the solution of this boundary-value problem is

Fig. 3: Bifurcation modes for a two-layer cylindrical shell. The
first three modes are shown. The mode m= 1 corresponds
to Euler buckling mode, whereas the modes m= 0, 2 give
axisymmetric barreling solutions. The dashed line indicates
the prediction given by the Euler buckling formula for a solid
cylinder (where µi = µo = 1=E/3). The slope of the solid line
gives the effective Young modulus. An increase in µo produces
an increase in effective Young Modulus (larger slope) for
µo = 12, A= 0.0001, B = 0.9, C = 1.

possible only for a particular combination of parameters
Ncrit =Ncrit(m, a, c). These values give the load necessary
for the existence of the m-th mode. Numerically, these
values are obtained by the determinant method for the
n-th order linear boundary-value problems [18,20]. As a
test of the method, we compute the bifurcation curves
for a neo-Hookean two-layer cylindrical model. In the case
where both layers have the same moduli μi = μo, we can
compare (see fig. 3, dashed curve) the solution with the
Euler buckling formula (dashed line), by identifying the
moduli with Young’s moduli μi,o =Ei,o/3. Three features
are of interest: first we see that for slender structures,
Euler’s formula provides an excellent description of the
critical stress value for buckling. Second, in the case where
Euler’s formula cannot be applied, the graph of Pcrit as
a function of σ becomes linear for σ small enough and
therefore, this bifurcation analysis provides a valid method
to define an effective Young modulus. Third, note that
barreling modes (m �= 1) require a short cylinder and these
modes are not relevant for the situation at hand and will
not be studied here.

Estimates. – The analysis presented in the previous
sections is a full three-dimensional large-deformations
stability analysis of a residually stressed nonlinear
material. What this approach gains in rigor, it loses
in its ability to provide simple estimates where the
role of each parameter can be established. We use the
three-dimensional analysis to establish the validity of an
estimate based on simple consideration of elasticity.
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Fig. 4: The effect of outer wall stiffness and strain-
stiffening properties on the stability of a two-layer cylinder.
A= 0.0001, B = 0.9, C = 1. The solid line corresponds to the
estimate (10).

First, we consider a cylinder made out of two cylinders of
different materials in the absence of growth with respective
radii A,B and C and length L as before. Then, a classical
way to estimate the Young modulus [21] of the assembly
is to consider the sum of flexural rigidities, that is

EestI =EiIi+EoIo, (9)

where Eest is an estimate for the effective Young modulus
provided by the linear theory of elasticity. Explicitly, it
reads

Eest = 3
μi(B

4−A4)+μo(C
4−B4)

C4−A4
. (10)

This estimate provides the main linear relationship with
respect to changes in the rigidity of the outer layer
observed in fig. 4 but fails to provide the correction with
the strain-stiffening parameter.
Second, we consider a grown two-layer cylinder with a

neo-Hookean material inside and a Fung material outside.
We further assume that a0≪ 1 so that a

2
0, a

4
0 can be

neglected. Before we consider an estimate of the flexural
rigidity, we need to model the Fung material under
extension. To do so, we consider the first approximation
that captures both the exponential behavior and the
small-deformation limit, that is the axial strain is

To = 3μoe
3νǫoǫ

2

o , (11)

where ǫo is the axial strain, computed with respect to
the unstressed grown configuration of the outer cylinder.
The apparent Young modulus of the outer cylinder is
obtained as the slope of the tangent to this curve as a
function of ǫo

Eo =
∂To
∂ǫo
= 3μo(6νǫ

2
o+1)e

3νǫ2
o . (12)

Similarly, we have, for the inner cylinder Ti = 3μiǫi and
Ei = 3μi, where ǫi is the strain with respect to the
unstressed configuration of the inner cylinder. Next, we
compute the rest shape of the grown cylinders, that is, we
assume that no net traction is applied at the two caps so
that

N = 0= π
[
Tob

2
0+Ti(c

2
0− b

2
0)
]

= 3π
[
μoe

3νǫoǫ
2

ob20+μiǫ
i(c20− b

2
0)
]
, (13)

where ǫi,o = l0/γi,o− 1 and the two cylinders are assumed,
without loss of generality, to have height 1 before they
start growing. The equation N = 0 can be solved for
l0 to obtain the residual strain. Since the equation is
transcendental in l0, no useful estimates of l0 can be
obtained, except in the case ν = 0 which is an upper
bound, lest for the length l0

lest = γiγo
μib
2
0+μo(c

2
0− b

2
0)

μiγob20+μoγi(c
2
0− b

2
0)
. (14)

We can use again eq. (9) to obtain an estimate:

Eest = 3
μib
4
0+μo(6νǫ

2
o+1)e

3νǫ2
o(c40− b

4
0)

c40
, (15)

where ǫo = lest/γi,o− 1 and b0, c0 are obtained by using
the assumption a0≪ 1 and from the conservation of
volume of each cylindrical layer, namely B2γi = b

2
0lest and

(C2−B2)γo = (c
2
0− b

2
0)lest. This estimate is compared

with the results of the numerical analysis of the stability
equation in the next section.

Results. – We now consider a grown two-layer cylinder
with a neo-Hookean material inside and a Fung material
outside and compute the effective Young modulus as a
function of the parameters. Without loss of generality, we
take γo = μi = 1. For comparison, we scale the effective
Young modulus by the Young modulus of a neo-Hookean
one-layer cylinder Enh. In the absence of growth, the
stiffness of the outer layer μo provides a substantial
improvement on the overall rigidity of the structure, which
is essentially linear in the ratio and well approximated by
the estimate (10) (see fig. 4). Note that the correction due
to the nonlinearity of the Fung model cannot be captured
since the estimate does not depend on the strain-stiffening
parameter ν. However, the strain stiffening property of the
outer wall has very little, if any, effect. Essentially, in this
regime, the outer layer is in a regime where it behaves as
a neo-Hookean material.
We can now fix the value of μo and consider the effect

of growth. In fig. 5, we first observe that in the absence
of strain-stiffening, the effect of growth is to reduce the
stability of the structure. Indeed, growth creates a large
zone of compression in the inner tissue (see fig. 2) so that
the cylinder is pre-compressed due to growth and therefore
buckles for a smaller load. Therefore, there is no gain
in stiffness due to growth in a homogeneous, isotropic,
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Fig. 5: The effect of axial differential growth on the rigidity
of a two-layer cylinder for different strain-stiffening proper-
ties (initial size A= 0.0001, B = 0.9, C = 1.0, µo = 12). The
estimates given by eq. (15) capture most of the exponential
increase of the rigidity as the relative growth between outer
and inner layer increases.

incompressible, two-layer neo-Hookean cylinder. However,
for a strain-stiffening outer layer, the situation is different
and even modest differential axial growth has a dramatic
effect on the rigidity of the structure. After growth, large
stresses are needed for the small changes in strains that
would occur on the concave side of the cylinder during
bending. The exponential increase of the effective Young
modulus is well captured by the estimate (15) that predicts
an exponential term of the form exp[κν(γi− 1)

2], where κ
depends on the moduli μi,o and the geometric parameters.
We conclude that the effect of differential growth is to
bring the outside layer in a regime where the nonlinear
stiffening response can be fully utilized.

Conclusion. – In order to isolate and understand
the effect of differential axial growth, we have neglected
important effects necessary to obtain a precise picture
of the material properties of specific biological struc-
tures, notably, anisotropic response and inhomogeneity.
However, the analysis presented here was performed using
the general framework of nonlinear elasticity which can be
easily generalized to include these effects.
Differential growth is known to be the driving force

for many important mechanical material properties and
morphogenesis. Since the early work of Brücke, differen-
tial growth and tissue tension were believed to play an
important role in shaping material properties for plants.
Surprisingly, the mechanical advantages of axial tissue
tension in cylindrical structures has not been rationally
explored despite a large literature devoted to the similar

problem of angular residual stress in arteries. Here,
we have shown that tissue tension, developed through
differential growth, creates a mechanical environment that
takes full advantages of the material’s elastic properties,
revealing a remarkable combination of effects related to
growth, stresses, and nonlinear elastic response.
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