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1. Introduction

Solitary waves are an important class of solutions for non-linear
partial differential equations (PDEs). They are waves of permanent
form that are localized within a space region, up to an exponential tail.
Typically, they are computed using the invariance under time and
space translations of the given differential equation. This means that
they are obtained by first reducing the PDE to an ordinary differential
equation and then computing homoclinic solutions of the reduced
dynamical system. Solitary waves are impossible in genuine non-
linear hyperbolic systems, where a wave of permanent form will turn
into a shock wave. The non-linear terms must be regularized, for
instance by a dispersion term, to produce permanent and localized
wave forms. Solitons are classes of solitary waves that can interact
with other solitary waves and emerge from the collision unchanged,
except for a phase shift. Solitons were first described by Zabusky and
Kruskal in 1965 for the Korteweg-de Vries (KdV) equation and since
then solitons have become a fundamental paradigm in non-linear
physics [1].

Mathematically, typical solitary waves have infinite tails, but
in the real world solitary waves must have a finite span. For this
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reason Rosenau and Hyman [2] generalized the notion of solitary
waves and solitons to admit compact waves and compactons. A soli-
tary wave with compact support beyond which it vanishes identi-
cally is a compact wave. By analogy, a compacton is defined as a
compact wave that preserves its shape after interacting with an-
other compacton. Whereas solitary waves are smooth solutions of
PDEs, compact waves are weak solutions in the sense that they are
not analytic functions and typically present discontinuities in some
of their derivatives. A compact wave is a mathematical object that
has the advantage that it can describe real world permanent form
waves on finite domains in a more accurate way than solitary waves
with infinite tails.

The compact wave paradigm is the so called K(m,n)-KdV equa-
tion [2]. Whereas in the classical KdV equation we have a non-linear
hyperbolic term that interacts with a linear dispersive term, in a
K(m,n) equation there is a non-linear hyperbolic term that inter-
acts with a non-linear dispersive term. The KdV equation is usually
obtained by an asymptotic procedure in different fields of applica-
tion, such as shallow-water waves with weakly non-linear restoring
forces, ion-acoustic waves in a plasma, and acoustic waves on a crys-
tal lattice [3-5]. The KdV equation is one of the best known exam-
ples of universal equations, which are, therefore, both integrable and
widely applicable. By contrast, the K(m,n) equations are somewhat
artificial, mathematical toys used to introduce compact waves.

The literature on compact waves and compactons is already ex-
tensive. However, to the best of our knowledge, Remoissenet et al.
[6,7] were the first to relate a compact wave directly to a physical
system in a clear and rigorous way. Moreover, they proposed an
experiment to observe compact-like kinks. The experimental appa-
ratus consists of a line of pendulums connected by rubber bands
instead of linear springs in an experimental apparatus similar to the
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mechanical analogue of the sine-Gordon equation [8]. In 2006,
using a non-linear theory of elasticity with an inherent mate-
rial characteristic length, Destrade and Saccomandi were able to
prove the existence of pulse solitary waves with compact support
[9]. Their idea has been also pursued in Rosenau [10], where an
extension to diffusion problems is considered. Details of the math-
ematics underlying the compact-like wave structures may be found
in Refs. [11-13].

In this paper, we are interested in solitary waves propagating
in Kirchhoff elastic rods [14]. Waves can propagate as flexural or
torsional waves in an elastic rod. The existence of such waves has
been studied extensively for both general constitutive relations [15]
and, in more details, for the case of inextensible, unshearable rods
with quadratic strain-density energy and circular cross-sections [16].
In this particular case, analytical solutions for traveling waves can
be obtained based on Kirchhoff analogy between the solutions of
the rod problem and the solution of the classical symmetric top
[17]. However, numerical simulations have revealed that these soli-
tary waves are not solitons [18]. Other integrable solitary waves
for completely and partially integrable rods were obtained in [19]
for non-circular cross-sections. The aim of the present paper is to
investigate the occurrence of compact-like waves in planar elas-
tic rods with or without intrinsic curvature. In the case of planar
rods with a quadratic strain-energy density function, the equations
determining the shape of the rods are formally equivalent to the
equations of the pendulum. Since all solutions of these equations
are known in terms of elliptic functions [20], no compact solution
can exist. Therefore, we consider higher-order strain-energy density
functions. Doing so, we introduce non-linear dispersive terms in the
rod equations which allow for the possibility of compact-like waves.
Note that in the mechanics of strings, compact waves are not pos-
sible since the equations for the dynamics of elastic strings are not
dispersive.

2. Preliminaries
2.1. Kirchhoff equations

We consider a homogenous, inextensible, and unshearable rod.
The rod axis is the geometric curve connecting the centroids of the
rod ‘cross sections.” We describe the rod axis in parametric form, by
a function R x R > (s, t)—r(s,t) € E3, where the parameter s is the
arc length, and t stands for time. A local orthonormal frame of ref-
erence (dq(s,t),dy(s, t),ds(s, t)) (the director basis) is defined at every
point of the rod axis, where d3 is the unit tangent vector pointing
in the direction of increasing parameter s, and d,d, are oriented
along principal axes of inertia of the rod cross section. Following
Antman [14], we denote the director basis coordinates of a vector
using sans-serif fonts, e.g. a = a;d; + apdy + aszds. The orientation
of the director basis is specified by an axial vector, the twist vector
u(s, t), through
(dj)s=uxd; i=1,23, (1)
where the subscript s denotes the derivative with respect to the
arc length. Note that Eq. (1) is a generalization of the Frenet-Serret
equations. If there is no twisting of the rod about its axis (i.e. for pure
flexure), the tangential component of the twist vector u is the torsion
7. The magnitude of the projection of u onto the (d;,d,) plane is the
curvature k. Both 7 and « are geometric properties of the rod axis.
Moreover, under the same assumption of pure flexure, the director
basis is fixed with respect to the Frenet basis (v, §, ), where T = d3
is the tangent, v is the principal normal that is the unit vector along
the derivative of 7, and p := 7 x v is the binormal vector. Since the
rod is inextensible, all strains are described by the twist vector u.

Linear and angular momentum conservation equations yield
N = pA(ds )ttv (2)
mg + d3 x n=[phd; x (dq); + plidy x (d2)];, (3)

where n is the force, m is the moment of force (henceforth: moment),
pA is the mass per unit length, plq, pl, are the moments of inertia
about the dy and d, axes, respectively, and the subscript t denotes
the derivative with respect to time.

The material (i.e. elastic) properties of the rod enter the dynamic
equations through the constitutive relation,

m = Wy(ug — 0q,up — 0,u3 — (3), (4)

where W is the strain-energy density function (we abbreviate its ar-
gument to u — a),
N ow . ow . ow N

Wy(u—1):= m(u —a)dy + ﬁ(u —a)d; + @(u —0)ds
is its gradient, and (s) is the intrinsic twist of the rod, i.e. the twist
vector in the unstressed state. A naturally straight rod has zero in-
trinsic twist, a = 0.

Egs. (1)-(4) are collectively called the Kirchhoff equations for an
elastic rod.

2.2. Traveling wave reduction

Denoting the traveling wave variable by y = s — ct (c is the wave
speed) and the corresponding derivatives with primes, the conserva-
tion laws (2) and (3) in the traveling wave system become

n’ = c?pAdj, (5)
m' +ds x n=c*(pluid; + phuady + (ply + ply)usds)’. (6)

System (1), (5), (6), and (4) represents a system of 18 equations for
18 unknowns (u,n,m,dq,d;,d3). However, all unknown functions
can be expressed in terms of u: the force n through u and first inte-
grals, the moment m explicitly via the constitutive relation, and the
director basis vectors (dj,d,,ds) from u and the boundary condi-
tions. We will, therefore, refer to u(y) as the solution of the traveling
wave system.

2.3. Equivalent static system

A remarkable property of Kirchhoff equations is that the form of
the traveling wave system is formally equivalent to that of a static
system (c = 0), as described by the following proposition.

Proposition 1. u(y = s — ct) is a traveling wave solution of Kirchhoff
equations, i.e. solution of system (1), (5), (6), and (4), if and only ifu is
a solution of the equivalent static system

n =0, (7)
m +d; xn=0, (8)
i = Wy(u — ), 9)
where

fi:=n - c2pAds =: n — Tcds, (10)
m :=m — ?(pluidy + plyuydy + (ply + ply)uzds), (11)

- 2
Wx):=W(x)- S (phG-+pla G+ ph+pb p)=W(X)-Zelx), (12)

are, respectively, the effective force, effective moment, and effective
strain-energy density in the equivalent static system.
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Note that in the equivalent static system, the force is reduced by
a tension T., while the strain-energy density is reduced by a term
Z. quadratic in the strains. Both T, and Z. are proportional to the
square of the wave speed.

The transformation by Z. is of particular interest as it allows the
adjustment of the quadratic term in the equivalent static strain-
energy density by choosing a suitable wave speed c. If the strain-
energy density W of the original traveling wave system contains
quadratic and higher-order terms, this transformation makes it pos-
sible to cancel the quadratic terms, and unravel the effect of higher-
order terms. In two dimensions, the quadratic term in W can be
canceled completely by Z: (this occurs when ¢ equals the speed of
sound for the rod material). However, in three dimensions, a partic-
ular condition relating geometric properties of the rod to its elas-
tic properties must be satisfied to cancel completely the quadratic
terms.

Proposition 1 justifies us in turning our attention to static systems
exclusively. Henceforth, we consider system (1), (7)-(9), and drop
the tildes hereafter.

2.4. First integrals for static systems

The static Kirchhoff equations admit different first integrals re-
lated to physical properties, namely:

Force. The force Eq. (7) yields a vector constant of motion, which,
without loss of generality, we choose in the es3 direction

n = Fe3 = const. (13)
Energy. Another first integral represents a local form of energy
H:=u-Wy(u—a)— W(u - a)+ n3 = const, (14)

where n3 =Fes -dj is the (generally non-constant) tension, i.e. the d3
coordinate of the constant force vector. If the strain-energy density
W is a homogenous function with degree of homogeneity k, then

H=(k—-1)W(u—a)+a-Wy(u—a)+ns. (15)

2.5. Equations in the plane

In two dimensions, the static Kirchhoff Egs. (1), (7)-(9), simplify to
a single ordinary differential equation (ODE) as follows. We confine
the rod to the (x,z) plane of a fixed laboratory frame of reference
(x,y,z), with basis (eq, e, e3), by pointing the binormal vector along
the (constant) y-axis, d, := e,. By doing so, we have ensured that
the director basis is a continuous function of s. This is generally not
true of the Frenet basis, where the normal and binormal vectors
discontinuously change direction at inflection points.

The only non-zero component of the twist vector is now in the
binormal direction, u = xd;, and the strain-energy density is a func-
tion of one scalar variable, W(u) = w(k), Wy = (dw/dk)d,. Note that
we denote the binormal component u, of u by the same symbol as
the curvature: k. Strictly speaking, however, but as the director basis
is not identical to the Frenet basis, the continuity of d, implies that
the signed curvature x must be allowed to take on negative values
(it changes sign at inflection points).

The effective strain-energy density of the equivalent static system
(12) reduces to

W) = w(k) — 62%12162. (16)

We do not impose the requirement of non-intersection in the
plane. This can be interpreted as a rod with an infinitesimally small
cross-section where non-neighboring parts are stacked on top of

each other (with no non-local interactions) if their Cartesian coordi-
nates coincide.

There are two possible ODEs describing the static planar Kirchhoff
rod: one using the angle, and the other using the curvature as the
dependent variable.

Angle formulation. The constant F can be used to eliminate the
force from (8), yielding

’
(3—V:(K—fc)> =Fsin0, (17)
where 0(s) := Z(es,ds(s)). Since k¥ = 0, Eq. (17) is a second-order
ODE in 0.

For a quadratic strain-energy density, Eq. (17) is the pendulum
equation, with its well-known solutions, none of which has compact
support. For all initial value problems of the pendulum equation the
solution exists and is unique. Therefore, by contradiction, it is not
possible to stitch together parts of different solutions in order to
obtain a compact wave.

Even though Eq. (17) is the simplest equation to integrate in the
intrinsically straight 2D case, the angle formulation is not easily gen-
eralizable to the intrinsically curved 2D case (for the boundary condi-
tions are specified in terms of the curvature) or to three dimensions.
We will, therefore, turn our attention to an alternative formulation.

Curvature formulation. Eliminating ny from the normal component
of the force equation using the binormal component of the moment
equation, and using the energy integral (Section 2.4), we have

(g—‘::(ic—k))ﬁzic(H—s—w(K—k)—Ki—V]:(K—k))- (18)

2.6. Compact waves

A solitary wave is a solution for which the strains and their deriva-
tives asymptotically vanish on both ends. For Eq. (18), the solitary
wave condition is

K(s) > &(s), K'(s)— &'(s) ass— +oo. (19)

A compact wave is a solitary wave with compact support [—4, /], i.e. a
wave in which the intrinsic state is reached with a finite value +¢ of
the independent variable s (‘in finite time’) rather than approaching it
asymptotically (exponentially). By analogy with dynamical systems,
it is often easier to think of the variable s as a time and picture
the solution as evolving in time rather than space. In this paper, we
(ab)use the word ‘time’ to refer to the independent variable of the
reduced dynamical system.
For Eq. (18), the compact wave condition is

K(s)=k(s), K(s)=&(s), Vse(—oo,—L]U[l,0), 0<l<o0. (20)

In other words, a compact wave is a solution u(s) that differs from the
intrinsic state @i(s) only over a bounded set of values of its argument.
We will assume that the rod is infinite, so that a compact wave is
composed of three parts: two semi-infinite parts with zero strain
bridged by a finite part with non-zero strain. Thus

a(s), se(—oo,—£)U (4, +00),

u(s)= {v(s), sel-0.0], (21)

where v # . At the boundaries between the three regions, continuity
of u is required

v(=0)=u(-¢), v(£)=1u({). (22)

If the derivative w’ is continuous as well, the solution is a classical

solution, otherwise it is a weak solution of the Kirchhoff equations.
The problem of finding a compact wave is, therefore, a boundary

value problem for v subject to boundary conditions (22), where the
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length of the interval 2/ is left unspecified (¢ is a parameter to be
determined from the equations). The boundary values correspond to
points (a(££),0) in phase space, and v corresponds to an orbit con-
necting these two points. If the intrinsic twist is constant (1= const),
the two boundary points coincide, and both v and u correspond to
a closed orbit starting and ending at (1, 0).

3. Compact waves in two dimensions
3.1. Compact wave criterion

We now examine the conditions under which Eq. (18) admits so-
lutions with compact support. We assume that w is a power func-
tion, and that the intrinsic curvature is constant (K = const).

The general question is as follows. Given a boundary value prob-
lem for an ODE, what are the conditions under which the solution’s
orbit in phase space is traced in finite time? We only consider ho-
moclinic orbits with the homoclinic point at the origin. We assume
that the orbit itself has a finite length, and we consider separately
the boundaries and the interior of the orbit. More precisely, the orbit
is traced in finite time if and only if:

1. the orbit leaves any neighborhood of the origin in finite time,

2. the orbit spends a finite time in any neighborhood of any point
in the interior of the orbit.

We refer to these properties as the finite-time property at the bound-

aries, and the finite-time property in the interior, respectively. The

necessary and sufficient condition for the former is given by the fol-

lowing lemma.

Lemma 2. Consider the equation
(Z")" =P(2), (23)

where P(z) = Z]’»‘zoajzj is a polynomial, and n > 1, subject to the null
Dirichlet boundary conditions

2(—€0)=2(£)=0, (24)

where ¢ is a parameter to be determined from the equation. Let mg be
the multiplicity of the root z=0 in P(z). Then £ is finite (i.e. the solution
satisfies the finite-time property at the boundaries) if and only if

n#mo>n-—2. (25)
Proof. Eq. (23) is a potential system in terms of y := z":
, dv
V= @(y), (26)
4 1/n
v =- [ Prnyan. (27)

The Dirichlet boundary conditions (24) imply that both y and y’ =
nz'-1z are zero at the boundaries. In order to satisfy these boundary
conditions, the energy E of the potential system must be set to zero
1

5O+ V() =E=0. (28)

Solving for z’ yields

(29)

Expanding the root around z = 0, the derivative z’ becomes, to first
order

7 Z((mO*”)/Z)JrlY (30)

where mg is the multiplicity of the root z=0 in P(z). We first impose
the regularity restriction: in order for the orbit to remain bounded,
the power of z in (30) must be non-negative

mo=n-—2. (31)

The critical value of n for which the behavior is exponential—and
cannot satisfy the boundary conditions (24)—is mg=n, while all other
values (mg #n) satisfying (31) yield solutions that converge to z=0
polynomially, which is consistent with the boundary conditions. [

The finite-time properties in terms of the original equation trans-
late directly into finite-time properties of the potential system be-
cause the transformation y(s) = z(s)" does not depend on the ‘time’
s explicitly. The finite-time property in the interior is guaranteed if
V is a coercive function and has a finite depth, and has no quadratic
extrema.

3.2. General power-law strain-energy density

We now apply Lemma 2 to Eq. (18) with a general homogenous
strain-energy density,

w(x) = %xk, k> 2. (32)
Only even values of k are considered, since odd values do not corre-
spond to a stable unstressed state. The variables z in the prototype
Eq. (23), y in the corresponding potential system (26), and the cur-
vature x are related by

K —k=z=y!/n=yVk-1), (33)

The key feature of Eq. (18) in the case of non-linear elasticity
(k> 2) is its singularity: the left-hand side is

(e — &)Y = af(k — 1)k — &) 2KY. (34)

Near the boundaries, the curvature x approaches the intrinsic cur-
vature &, thus the function multiplying the highest derivative in (18)
approaches zero and reaches zero for a finite value of the indepen-
dent variable. The right-hand side of (18) must also equal zero for
K = K, thus

“H = 0. (35)

Therefore, in the intrinsically curved case (k #0), the energy integral H
must be equal to zero, otherwise the boundary conditions cannot be
reached, not even asymptotically.

It is interesting to note that, as we have a singular equation (cf.
(34)) that can be cast as a potential system (26), (27), it is the non-
linear transformation (33) between the two that carries the singu-
larity.

Potential. Applying Lemma 2 to the curvature Eq. (18) for the
power function strain-energy density (32), in the left-hand side we
identify n =k — 1, while the right-hand side is

P(z)=§f<+gz—z’H (1%2+zk<2—,l<)+22 (l—}—(» (36)

The potential V(y)=— f3 P(7"/*~D)dy derived from (36) is a double-
well potential. Condition (35) ensures that the origin is at a local
extremum of V.

Note on zero H and intrinsically curved rods. If H= 0, meaning that
there is no tension in the non-strained boundary parts (—oo, —¥¢),
(¢,00), and that the force is compressive in the strained part [—/, ]
(n3 <0, cf. (15)), the origin is a local minimum of V(y) for arbitrary
even k. The origin is, therefore, a fixed point, and the only solution
is the trivial one: k¥ = «. Therefore, there are no compact wave
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Fig. 1. The potential and the homoclinic orbit for an intrinsically straight rod and a quartic strain-energy density (42). Scales: ymax := 64/a?, Vi, := —4608/a®, where a is

the characteristic length scale (46). (a) Potential and (b) zero-energy orbit in (y,y’) phase plane.

solutions for H = 0, implying that no compact waves are possible on
intrinsically curved rods k#0 (cf. (35)). Henceforth, we assume that
H+#0, and consider the intrinsically straight case exclusively
H#0, k=0, (37)
in which case the origin is at the central local maximum of the
double-well potential V.

Behavior near the boundaries. With & =0, (36) reduces to

P(z)= gz - (1 - %)z"“.

The coefficient of the linear term is (H/a)#0, yielding mg = 1, and
the criterion (25) is satisfied for all k > 2.

Behavior away from the boundaries. For an intrinsically straight
rod, the potential is

(38)

y
Vy)= — / P(nY/k=1)) dy
0

k-1
TR

k/(k=1) ((k — 1)ykk-1) 2k§> i (39)

This double-well potential is a coercive function, and has a finite
depth. It is straightforward to verify that it satisfies finite-time re-
quirement in the interior for an arbitrary power k > 2.

3.3. Quartic strain-energy density

A quartic system. Consider a linearly elastic rod, with strain-energy
density wo(x) = (A/2)x2, where A is the flexural rigidity, that is the
product of Young’s modulus by the cross-section second moment
of area. If this strain-energy density is perturbed by a quartic term,
w(x) = wo(x) + (0/4)x*, the quartic term can be brought to light by
means of Proposition 1: a wave propagating on this rod with a suit-
ably chosen speed is equivalent to a purely quartic-w static system,
the quadratic term being canceled by Z. (cf. (12)). The critical speed
at which this occurs, cs = /E/p, is the speed of sound in the material
of the rod.

Potential system. For the quartic strain-energy density

wix) = Zx4, (40)

P(z)= gz— 225, (41)

and applying Lemma 2, we have mg =1, n = 3, and (25) becomes
3#1>1. The potential (39) is

_3 433,43 ,H
V(y)—sy o4 2—),

- (42)

and is shown in Fig. 1. Again, this is a double-well potential with the
origin sitting at the local maximum. The homoclinic orbit is shown
in Fig. 1.

Integrating the curvature equation. Rather than integrating the po-
tential system, it is more convenient to go back to the curvature
equation (18) with the quartic strain-energy density (40),

_ 3_“,€4>,

2 (43)

(Y =K (
which can be solved exactly. Multiplying through by (x3) = 3x2x/,
the resulting equation can be integrated to yield

%[(;@)’12 = ?;&‘ - 2_;%8 +C (44)
where C is an integration constant, which corresponds to the energy
in the potential system for y, C = E. The only value of the integration
constant which yields solutions compatible with the null Dirichlet
boundary conditions is E = 0. Moreover, any non-zero value of E im-
plies a blow-up of the derivative at the origin, and the only value
leading to a finite jump in x’ at the boundaries is E = 0. With the in-
tegration constant set to zero, dividing both sides of (44) by (90/2)x*
leads to

() = (45)

1H 1 4
6o 16 °
The solution of this equation can be expressed in terms of the Jacobi
elliptic sine function

K(s) = %sn(s/a; -1), a:= 2\‘/%.

The Jacobi sn function is periodic with period 4K(—1), where K is
the complete elliptic integral of the first kind. In order to construct
a compact wave of the form (21) with @ = 0, we need a half-period
between two consecutive zeros. The size of the support of the com-
pact wave solution is thus 2¢ = 2aK(—1) ~ 10.49a. Therefore, the
compact wave solution is given by

(46)

%sn(s/a; -1), se]0,2aK(-1)],
0 otherwise.

K(s) = (47)

(The support is now [0,2¢], which is equivalent to [—¢,£] up to a
phase that is the integration constant in (46), which we have set to
zero for simplicity.) The solution (47) is shown in Fig. 2b, and the
shape of the rod corresponding to this curvature is shown in Fig. 2c.
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Fig. 2. Compact wave solution on an intrinsically straight rod with quartic strain-energy density (47). Scales: kmax := 4/a, K}, := 4/a%, and a is the characteristic length
scale (46). (a) Orbit in (x, ') phase plane, (b) curvature as a function of the ‘time’ parameter s and (c) rod in the plane (the strained part is highlighted).

We have obtained a one-parameter family of compact wave so-
lutions, where the characteristic length a is a function of the ratio of
the elastic constant « to the energy integral H.

The following properties of the exact solution (46) follow from
the properties of the sn function:

o The graph of sn passes through the origin with unit slope, so (the
jump in) the derivative of the curvature (47) at the boundary is
4/a2. Solution (47) is a weak solution.

o The sn function reaches a maximum at s =K(—1) with value equal
to one. Therefore, the maximum value of the curvature (46) is

4
Kmax = k(s = aK(-1)) = g (48)

o The derivative of sn can also be expressed in terms of Jacobi elliptic

functions

K'(s)= C%cn(s/a; —1)dn(s/a; -1); (49)

thus the phase portrait can be drawn using exact values (46), (49)
(see Fig. 2).

4. Conclusion

Unlike the linearly elastic rod, a static Kirchhoff rod with quar-
tic or higher-order strain-energy density is described by a singular
ODE (cf. (34)). In a classical homoclinic solution, the fixed point is
reached in infinite time. Therefore, there is no possibility of combin-
ing the homoclinic solution with any other solution. By contrast, if
a fixed point can be reached in a finite time, different solutions can
be combined on a bounded time interval. A finite-time homoclinic
orbit combines features of an infinite-time homoclinic orbit and a

periodic orbit: like an infinite-time homoclinic orbit, it has a fixed
point at both ends, and like a periodic orbit, it only takes a finite
time for a complete cycle. Having reached the fixed point at either
end, based on the non-uniqueness property, the solution can go for
another round along the homoclinic orbit (a periodic solution), or
stay at the fixed point indefinitely (a compact support solution).

We have shown that static compact support solutions always ex-
ist on intrinsically straight rods with non-linear constitutive rela-
tions, and that intrinsically curved rods do not exhibit this type of
behavior.

The results were obtained using homogenous strain-energy den-
sities, but they are also applicable to non-homogenous ones, since
the finite-time criterion (25) only depends on the lowest power ap-
pearing in the strain-energy density.

Although all results have been reached in a static framework,
Proposition 1 provides a broader context: a static solution for a sys-
tem with strain-energy density W corresponds to a wave traveling at
the speed of sound on a rod whose strain-energy density combines W
with a quadratic term (cf. (12)). Thus, each static solution with com-
pact support also represents a compact wave traveling at the speed of
sound. Similarly, compact waves in non-linear Klein-Gordon equa-
tions are possible only if the waves move at the speed of sound [6,7].
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