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Possible role of differential growth in airway wall remodeling in asthma
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Moulton DE, Goriely A. Possible role of differential growth in airway
wall remodeling in asthma. J Appl Physiol 110: 1003–1012, 2011. First
published January 20, 2011; doi:10.1152/japplphysiol.00991.2010.— Air-
way remodeling in patients with chronic asthma is characterized by a
thickening of the airway walls. It has been demonstrated in previous
theoretical models that this change in thickness can have an important
mechanical effect on the properties of the wall, in particular on the
phenomenon of mucosal folding induced by smooth muscle contrac-
tion. In this paper, we present a model for mucosal folding of the
airway in the context of growth. The airway is modeled as a bilayered
cylindrical tube, with both geometric and material nonlinearities
accounted for via the theory of finite elasticity. Growth is incorporated
into the model through the theory of morphoelasticity. We explore a
range of growth possibilities, allowing for anisotropic growth as well
as different growth rates in each layer. Such nonuniform growth,
referred to as differential growth, can change the properties of the
material beyond geometrical changes through the generation of resid-
ual stresses. We demonstrate that differential growth can have a
dramatic impact on mucosal folding, in particular on the critical
pressure needed to induce folding, the buckling pattern, as well as
airway narrowing. We conclude that growth may be an important
component in airway remodeling.

mucosal folding; chronic asthma; growth; elasticity; instability

ASTHMA IS A DISEASE CHARACTERIZED by a narrowing of the
airway and reduced lung function. Chronic asthma is often
accompanied by irreversible structural changes to the airway
wall, collectively referred to as airway remodeling (43). Air-
way remodeling is a complex process occurring at multiple
time and length scales and involving many different chemical,
biochemical, and physical stimuli. Despite a wealth of research
it is still not clear how each of the different structural changes
individually affects airway function (51), nor is it known
whether these different changes are beneficial or detrimental to
asthmatic patients (32). A well documented key feature of
airway remodeling is an increase in airway wall thickness,
detected at all levels of the bronchial tree and all layers of the
airway wall (19, 22, 24, 36).

In this theoretical paper, we focus on the mechanics of
airway wall thickening and the mechanism of mucosal folding
at a macroscopic level by building a model based on the most
sophisticated constitutive theory for elastic tissue available in
the bioengineering literature. In response to certain stimuli, the
smooth muscle surrounding the airway wall contracts and the
luminal boundary folds or buckles—this is the phenomenon of
mucosal folding. In “normal patients,” such an event is marked
by only modest narrowing of the airway (34). In asthmatic
patients, however, this airway narrowing tends to occur for
lower stimuli and also leads to exaggerated narrowing (23).

Mucosal folding is also observed in the esophagus (28, 57),
blood vessels (27), and gastrointestinal tract (30). On a me-
chanical level, this folding indicates an instability of the inner
mucosal edge in response to an external pressure provided by
the contraction of smooth muscle. A number of models have
looked at mechanical and geometrical aspects of mucosal
folding. Some of the key issues from a modeling perspective
are: determining the critical buckling pressure, critical buck-
ling mode (i.e., the number of folds in the buckled state), and
the degree of airway narrowing; finding relationships between
these quantities; and determining the impact of airway wall
thickness. Lambert (25) modeled the basement membrane as a
single layer elastic tube and showed that the buckling mode can
have a dramatic impact on airway narrowing; in particular that
an airway with fewer folds will have a greater degree of
occlusion if the folds extend until epithelial cells come into
contact. This basic model was expanded on in Ref. 26, in
which a geometric constraint was included as a mechanism for
selecting the number of folds and was further expanded to
include a thin layer of fluid on the inner edge of the airway
allowing for possible surface tension effects (15). Other geom-
etry based models have been proposed (including Ref. 47) in
which inextensibility of the basement membrane was taken as
a geometrical constraint, and the number of folds was directly
connected to tethers between the airway and smooth muscle;
and Donovan and Tawhai (6), who studied effective airway
radius given fixed folding geometry. Wiggs et al. (54) put the
problem on a more mechanical level, in which the airway was
modeled as a bilayered elastic tube. Solving the buckling
problem in a finite element analysis, they found wall thickness
to have a significant effect on the buckling mode and degree of
narrowing. Similar models, also solved with finite elements,
were presented a few years later, also incorporating inertial
effects of the basement membrane (3) and a comparison with
buckling experiments with rubber tubes (18).

There are two potential drawbacks to previous models that
should be elucidated. First, it is important to note that none of
these models allowed for nonlinear material responses to large
deformations, which are common in airway narrowing (37).
Over the past decade, it has become increasingly clear in
studying the mechanical properties of biological tissues that
nonlinear tissue response, inhomogeneity, and remodeling are
important, if not crucial, features (8). The importance of
nonlinear elasticity in biological systems is well documented
and appreciated in the case of arteries (9, 13, 17, 40, 48), heart
(29), muscles (49), brain tissue (55), and many other plants (12,
50) and biological systems (48). It is clear that to understand
both the mechanical response and remodeling processes in
airways, a constitutive theory based on nonlinear elasticity is
required.

Second, a potentially important assumption in previous me-
chanical models is that the mechanical properties of the airway
wall do not vary during remodeling, despite evidence that these
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properties might be altered (21). That is, airway wall thickness
is explored by varying reference dimensions, without any
account for how the dimensions might have changed and
whether mechanical properties might have varied in the pro-
cess. This is a key distinction, and underlies the primary
question we seek to answer in this paper: could growth signif-
icantly impact the mechanical response of the airway to smooth
muscle contraction beyond the change in geometry and thus be
an important factor in airway remodeling?

The structural changes involved in airway remodeling fall
into the large category of processes known in the bioengineer-
ing literature as growth and remodeling of elastic tissues.
Growth in biological systems can be the result of many
different processes. Continuum mechanics and the theory of
elasticity have long been used to study growth processes and
the mechanical properties of growing tissues. It is now under-
stood that biological materials commonly exhibit differential
growth; that is the tissue does not grow equally in all directions
and/or different parts of the tissue grow at different rates.
Differential growth can profoundly alter the geometry and
mechanical properties of a material. Local changes of mass
induce not only a change in the geometry but also elastic
stresses that cannot be eliminated geometrically and thus gen-
erate so-called residual stresses, which persist in the absence of
external loads on the material. Residual stress is a hallmark of
biological tissues and plays a key role in the regulation of many
biological systems, including arteries (13, 16, 20), blood ves-
sels (7), the human aorta (17), and plant stems (50).

In this paper, we model the airway as a two-layer cylindrical
structure and take into account both geometrical and material
nonlinearities by using the theory of finite elasticity (39). The
growth of the airway is described via the theory of morphoe-
lasticity and the buckling of the airway is computed using an
incremental deformation stability analysis (2). As mentioned,
the model presented here combines both the nonlinear response
of the tissues in large deformation and the effect of growth,
features that are absent from previous modeling attempts.
[Note Yang et al. (57) recently presented an interesting anal-
ysis using the same machinery of finite elasticity for a model of
the esophagus, but did not consider growth.] Using this model,
we demonstrate that differential growth, in particular anisotro-
pic growth, can have a dramatic impact on the critical pressure
exerted by smooth muscles needed to trigger buckling, the
number of folds, the buckling pattern, and the degree of airway
narrowing. Growth can also alter stability properties and lead
to seemingly counterintuitive results, for example an airway
wall may become thicker while losing stability. Our results
highlight the importance of mechanical effects due to growth
and suggest a need for further experimental research along
these lines. Indeed, our hypotheses may be tested by direct
measurement of residual stress (31).

MODEL AND METHODS

We model an airway segment as a bilayer cylindrical structure,
considering only tissue interior to the smooth muscle. Following the
model given by Wiggs et al. (54), a stiff and thin inner layer
corresponds to the mucosal region, consisting of the basement mem-
brane, the lamina propria, and the epithelium (1). Surrounding this is
a portion of the submucosa region, consisting of loose connective
tissue. The inner layer is much thinner and stiffer than the outer layer.

The airway smooth muscle (ASM) surrounds the outer layer, with
ASM contraction providing a force that deforms and eventually
buckles the tube. ASM contraction is a fairly complex process, and
several models have been formulated to couple the underlying chem-
ical processes to mechanics (5, 42, 53). The net mechanical effect of
ASM contraction is a normal force applied at the airway wall-smooth
muscle interface (42). Since our purpose here is to focus on growth
and buckling, ASM contraction is taken into account as an applied
normal pressure boundary condition at the outer edge. Also, since
mucosal folding occurs at the mucosal region while the smooth
muscle remains roughly circular (26), we impose the boundary con-
dition that the outer edge remain circular in the deformed, buckled
state.

The setup is depicted in Fig. 1. Material dimensions for the
undeformed, reference airway are the inner radius A, the thickness of
the inner layer, B � A, and the thickness of the outer layer C � B. We
assume an isotropic, incompressible hyperelastic material (4). To
characterize the difference in stiffness between the two layers, the
value of the shear modulus is assumed different in each layer; thus we
have the parameters �1 and �2.

The model is three dimensional but assumes only plane strain
deformation, so that the deformation is uniform along the tube axis.
The basic idea behind the analysis is that as the smooth muscle
contracts, it creates a pressure normal to the circular cross section and
the tube deforms in a symmetric fashion, maintaining its circular
shape, until a bifurcation point is reached at a critical pressure, at
which point the cylinder “buckles” to an asymmetric state. The typical
output of our mathematical model will be the value of the critical
pressure. Physiologically, this can be linked to the magnitude of
contractile force of the ASM necessary to induce buckling of the
airway. While the precise relationship between normal pressure and
contractile force is nontrivial and would require knowing material
properties of the smooth muscle, it is a monotonic relationship. Thus
an increase in critical pressure corresponds to a greater contractile
force for buckling. In terms of airway hyperreponsiveness, buckling
pressure (or contractile force of ASM for buckling) provides a good
measure of the “strength” of an airway. This issue is discussed more
fully in the DISCUSSION.

Fig. 1. Bilayer model of airway wall, consisting of a stiff and thin inner layer,
the mucosa, and a soft and thick outer layer, the submucosa. Surrounding the
submucosa is smooth muscle, which applies a normal pressure when it
contracts.
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The buckling analysis follows the incremental theory (52). Math-
ematically, it consists of a linear stability analysis for a solution of
mechanical equilibrium in finite elasticity. A nonsymmetric perturba-
tion is added to a symmetric finite deformation, and the equations of
mechanical equilibrium are expanded in terms of the perturbation
parameter, resulting in a fourth-order differential equation for the
radial displacement of the nonsymmetric deformation. A solution to
the bifurcation equation indicates buckling of the tube. In this formu-
lation, the pressure due to ASM contraction appears as a boundary
condition for the initial symmetric deformation while the requirement
that the outer edge always remains circular appears as a boundary
condition when solving for the nonsymmetric deformation. Also, note
the distinction that large deformations and nonlinear tissue response
are built into the model by the use of the theory of finite elasticity, but
the buckling parameters are determined via a linear stability analysis.
This approach has the advantage that buckling properties can be analyzed
efficiently without the need for complex and expensive numerical tech-
niques. The drawback, which we return to in the DISCUSSION, is that the
deformation cannot be tracked beyond the instability. A full derivation of
the growth and bifurcation equations, as well as our approach to solving
the bifurcation equation, can be found in Ref. 35.

The buckling mode number, which is the number of folds in the
buckled state, enters as a parameter in the bifurcation equation. For
each mode number, a critical pressure is found. This critical pressure
represents the pressure necessary to induce buckling at that particular
mode. The actual buckling pressure observed in an ideal experiment
is the smallest critical pressure over all modes, and the corresponding
mode defines the expected buckling pattern.

Growth is included in the analysis via the theory of morphoelas-
ticity and multiplicative decomposition of the deformation tensor (11,
46). The basic concept is that the deformation of the body is due to a
local change of mass and to an elastic deformation. Since the change
of mass is expressed locally, neighboring “cells” can grow differen-
tially. In the absence of elastic deformation, this can induce incom-
patibilities such as overlapping cells or separation of tissue. The
elastic deformation then brings the material back to a compatible
configuration; this step can be seen as an elastic response to growth
and can induce residual stress in the material.

The effect of symmetric growth in each layer is captured by two
parameters per layer, instructing the gain or loss of mass in the radial
and circumferential directions. We denote these growth parameters
�r

(i), ��
(i), �r

(o), ��
(o). Here �r corresponds to radial growth, with a gain

or loss of mass in the radial direction if �r is greater than or less than
1. The addition or loss of mass in the circumferential direction is
captured by ��, where �� � 1 corresponds to circumferential growth
and �� � 1 to circumferential resorption. Figure 2 gives a schematic
of radial vs. circumferential growth. The superscript differentiates the
inner and outer layers. In general, these parameters can be functions
of radius, which would signal the case of different “rings” of the
airway growing at different rates. Here we consider anisotropic but
homogeneous growth in each layer, thus the �s are constant but not
equal.

As our results are largely focused on varying these parameters, it is
instructive to further clarify their meaning via a simple example.
Consider a single layer tube with radii A � 1, B � 2, with no applied
pressure and three different forms of growth:

1. �r � 2, �� � 2. The parameter values imply that there is a
doubling of mass in both the radial and circumferential directions.
Since growth is isotropic and no other forces are applied to the system,
the deformed grown tube has radii a � 2, b � 4, highlighting a
doubling of all radial and circumferential lines. In this case, no
residual stress is generated.

2. �r � 1, �� � 2. In this case, there is growth only in the
circumferential direction. To account for the anisotropic growth,
the tube expands to a larger total radius, while keeping nearly the
same length of radial lines. A numerical computation gives that the
tube after growth has radii a � 2.48, b � 3.49. The growth induces

a slight tensile radial stress. There will also be circumferential
stress, namely the inner edge will be in tension and the outer edge in
compression.

3. �r � 2, �� � 1. Here, growth occurs only in the radial direction.
A numerical computation gives the radii after growth as a � 0.69, b �
2.54; in this case radial lines want to double in length but are
constrained, thus the anisotropic growth induces a compressive radial
stress.

To further understand the effect of growth, if we were to plot
pressure-area curves (prebuckling), the area would decrease more
rapidly with increased external pressure in case 2 than in case 3. This
can be understood in terms of the stress induced by the growth. In case
2, the inner edge is in tension, i.e., there is a positive circumferential
stress, whereas the inner edge is in compression in case 3, correspond-
ing to the compressive radial stress. Thus, in case 2 the inner edge
tends to shrink to relieve the tension, and the area will decrease more
rapidly with applied pressure.

On Material Properties

In this paper we will present results for a neo-Hookean strain
energy function W, given by W � (�/2)(��2 � �2 � 2), where � �
0 is the shear modulus, and � is the circumferential elastic stretch.
Lacking data to classify the exact material properties of the airway
wall, it is worthwhile to check the implications of using a neo-
Hookean strain energy. Note that a neo-Hookean material exhibits
strain-softening properties. A common strain-energy function for
biological tissues that exhibits strain-stiffening is the Fung model,
given by W � (�/2�){exp[�(��2 � �2 � 2)] � 1}. The parameter �
typically takes a value between 3 and 20 for soft tissues (10), and the
Fung model approaches the neo-Hookean model in the limit of � ¡
0. In Fig. 3, we plot pressure vs. area for the symmetric deformation
of a bilayered tube for the neo-Hookean model, Fung model with both
� � 3 and � � 20, and also for a linear elasticity model. Each model

Fig. 2. Transformation of an area element under circumferential vs. radial
growth.
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gives qualitatively similar pressure area relationships as expected, but
a significant quantitative difference exists between each curve. Thus
the importance of including nonlinearity should be clear; in particular
there is a significant difference between the linear model and the Fung
model at large pressure. As there is also a significant quantitative
difference between the neo-Hookean and Fung curves, the question
remains how dependent our results are on the choice of strain-energy.
Although the results presented below are only for the neo-Hookean
model, we also explored the same relationships for a Fung model and
have found the same qualitative results, with the quantitative differ-
ence that effects are amplified, i.e., a more drastic change in buckling
pressure and mode occurs. Since our intent is to provide a general
framework for understanding the impact of growth on mucosal fold-
ing and asthma, and for a more streamlined presentation, we omit
results with the Fung model.

RESULTS

The bilayer model described above, with two growth param-
eters for each layer, admits a large parameter space. As our
goal is to investigate the effect of growth on the buckling of a
normal vs. a remodeled airway, we will primarily keep refer-
ence dimensions of the airway fixed and change the thickness
of the airway by varying the growth parameters. In this way the
growth defines a deformation from the normal airway to the
remodeled airway. In prior studies, thicker airways have been
studied by changing the reference dimensions themselves,
without any particular mechanism to account for the change.
By keeping the reference dimensions fixed and altering the
growth parameters, we can explore the effect of thickness on
the buckling, but we are able to account for the change of
thickness as well as the changes in material properties resulting
from additional residual stresses. We use as reference “normal
airway” dimensions the base values A � 0.98, B � 1, C � 1.5,
�1 � 40, and �2 � 4, giving a stiffness ratio �1/�2 � 10. Here
the radius values are in units of millimeters and the shear
moduli in units of kilopascals. The critical pressures appearing
in this paper are also measured in kilopascals. These values are
motivated by physiological measurements (22, 38) and would

correspond roughly to a medium sized cartilaginous airway
with inner perimeter 	6.16 mm and Youngs modulus of the
inner layer of 120 kPa; this choice of base values has also been
used in previous airway models (18, 54). It should be noted that
obtaining precise values for thickness and stiffness ratios is a
challenging task and varies over generations of the bronchial
tree. Thus we also explore the effect of changing reference
dimensions in Airway size.

Isotropic growth. The first effect we consider is isotropic
growth, but with different growth rates in each layer. That is,
we assume 
r � 
� in each region but that 
(i) � 
(o). As an
example, we let 
(o) � 1.2 and vary 
(i) � 1. We plot in Fig. 4 the
critical pressure (Fig. 4A) and critical buckling mode (Fig. 4B)
as a function of 
(i) ranging from 0.9 to 1.4. In Fig. 5 the same
plots are shown with 
(i) � 1.2 fixed and 
(o) ranging from 0.95
to 1.5. It should be noted that the critical buckling pressure
only depends on the ratio 
(i)/
(o). Different values with the
same ratio are equivalent up to an isotropic and equal growth
multiple in each layer, so that the critical pressure does not
differ (note that the airway dimensions will vary by the same
scalar multiple). Thus the critical pressure for 
(i) � 1.2 in Fig.
4, and for 
(o) � 1.2 in Fig. 5, corresponds exactly to the
critical pressure in the absence of growth (as shown by the

Fig. 4. Critical buckling pressure (A) and buckling mode (B) as a function of
isotropic growth of the inner layer, for fixed isotropic growth in the outer layer,

(o) � 1.2.

Fig. 3. A comparison of pressure vs. area for the symmetric deformation of a
bilayered tube for 4 different forms of model. Parameters are A � 0.98, B �
1, C � 1.5, �1 � 40, and �2 � 4.
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horizontal line on the figures). Comparing the critical pressure
to this reference case, it is interesting to note that when the
ratio 
(i)/
(o) � 1, the airway is less stable, i.e., it buckles at a
lower pressure. On the other hand, a greater pressure is re-
quired when this ratio is less than one. In other words, the
airway is weaker with respect to buckling when the inner layer
grows at a greater rate than the outer layer, and likewise
stronger when the outer layer grows faster. Observe that this
effect is significant as the change in critical pressure increases
by a factor of 	8 as 
(o) changes from 1 to 1.5.

As stated, the linear stability analysis enables us to find
critical buckling parameters, but once buckling occurs we have
no direct information on the magnitude of the deformation.
Thus we cannot comment directly on the exact amount of
narrowing of the airway after buckling occurs. Nevertheless,
we can make relative comparisons of the size of the non-
symmetric deformation for different parameters. In this way,
we can determine if buckling at one set of parameters should
result in more or less narrowing (initially) than buckling at
another set of parameter values. Buckling patterns for the
points marked I–IV in Figs. 4A and 5A are shown in Fig. 6.
Comparing I and II, in the case of 
(o) � 1.2 fixed, each type
of growth can be argued to have advantageous and disadvan-
tageous features. At the lower value of 
(i), the buckling
pressure is much higher but the airway narrows significantly
more. If an airway were to grow with the growth rates at point

I, it would have a greater resistance to ASM contraction but
would have exaggerated narrowing when buckling occurs. At
the higher value, it is the opposite: the airway narrowing is
reduced but the buckling pressure is much lower. There is
essentially a tradeoff between the two growth rates. This trade
off does not occur in the case of fixed 
(i) (Fig. 5). The larger
value of 
(o) (point IV) has a higher resistance to buckling and
comparable narrowing to the smaller value of 
(o) (point III).
Note that the growth ratio is nearly equal at points I and IV, but
both values of � are higher at IV, and the increased growth
leads to a larger airway area. Between the destabilizing
growths, III is more detrimental to airway function as it has
greater airway narrowing.

Referring to Figs. 4–5, it seems counterintuitive that more
growth in the outer layer is required to strengthen the airway
wall, since the inner layer is stiffer. In fact, a primary result of
Wiggs et al. (54) was that increasing the thickness in the inner
layer has a greater impact on buckling than increasing the
thickness of the outer layer. The reasoning behind this is that
differential growth creates residual stress, which induces a
competition between mechanics and geometry. In particular,
when the inner layer grows, it pushes against the outer layer,
creating a compressive residual stress in each layer. This
mechanical effect is destabilizing against external pressure, so
that although geometrically the tube may seem stronger, this is
outweighed by the mechanical destabilization. (Conversely,
when the outer layer grows faster, it pulls the inner layer,
creating a stabilizing tensile stress.) This seemingly counterin-
tuitive result almost directly contradicts the findings of Wiggs
et al. and hence highlights the important mechanical role of
differential growth.

Anisotropic growth. In this section we consider anisotropic
growth. For simplicity, we assume that the outer layer does not
grow and explore buckling as a function of anisotropic growth
in the inner layer by varying the ratio 
r

(i)/
�
(i). Thickening of

the inner layer only occurs with radial growth. In Fig. 7, the
critical pressure is plotted for 
�

(i) � 1 fixed and 
r
(i) varying from

1 to 2. As 
r
(i) increases, the inner layer becomes thicker—it

doubles in size from 
(i) � 1 to 2. Correspondingly, the
buckling pressure increases in a linear fashion. Again, there is
a competition between mechanics and geometry: radial growth
causes the inner layer to be relatively thicker—this is a stabi-
lizing geometric effect—but at the same time creates a radial
compressive stress, which is destabilizing mechanically. In this
case, since the inner layer was very thin to begin with, the
geometric effect is stronger and the resultant airway is more
stable than before growth.

In terms of the degree of narrowing, with increasing growth
the buckling mode decreases monotonically and significantly,
from n � 27 at 
r

(i) � 1 to n � 14 at 
r
(i) � 2. Included in Fig.

7 are the form of the deformation at the values 
r
(i) equals 1.2

and 2. Here the effect of buckling mode is apparent. In both
cases, the inner radius at the point of bifurcation is 	0.87, and
both plots are produced using the same sized perturbation in
the incremental deformation, but the airway narrowing is
exaggerated at the point with the lower mode, 
r

(i) � 2.
Defining the effective lumen as the area inside the innermost
point of the folds (the shaded circles), we compute that this
area is 18% greater in the case 
r

(i) � 1.2. Interestingly, if the
anisotropic growth of the inner layer is accompanied by an
isotropic swelling of the outer layer, the critical pressure is

Fig. 5. Critical buckling pressure (A) and buckling mode (B) as a function of
isotropic growth of the outer layer, for fixed isotropic growth in the inner layer,

(i) � 1.2.
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almost doubled, while the lumen area stays roughly the same
(plot not shown).

Fixed outer radius. The model as it has been presented does
not restrict outward growth. For instance, in case IV of Fig. 6,
notice that the outer edge is well beyond the location of the
smooth muscle cells boundary before deformation (the outer

radius of the reference state, equal to 1.5). This may not be
realistic. It is likely that ASM, even before contracting, places
a geometric constriction on the growth of the outer layer, so
that the airway is restricted to grow radially outward, and must
otherwise grow radially inward. The exact form of this con-
straint is complicated by the fact that the smooth muscle also
grows during remodeling (23) and a detailed understanding of
the growth relationships between the various layers of the
airway is required. Nevertheless, some insight on the effect of
a geometric constraint can be obtained if we fix the size of the
outer radius during deformation. Mathematically, this changes
the structure of the problem through the boundary condition
since growth and pressure become interdependent. Fixing
growth parameters automatically sets the pressure—a given
growth creates pressure at the outer wall since the outer edge
pushes against the smooth muscle. In this case, pressure is not
a control parameter but is slaved to the growth parameters.

In Fig. 8A, we plot the bifurcation relationship between 
(o)

and 
(i) for fixed outer radius. A given value of 
(i) and the
corresponding 
(o) represent a form of growth that induces
buckling. For each growth pair, the corresponding pressure is
plotted in Fig. 8B.

There are different ways to view these plots and this version
of the model. If we assume that the ASM interface is rigid and
does not allow any outward growth, then Fig. 8A shows the

Fig. 6. Buckling patterns, or tube deformation, after
bifurcation for the points marked I-IV in Figs. 4A and 5A.

Fig. 7. Critical pressure as a function of anisotropic growth of the inner layer.
All other growth parameters are set to unity.
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critical growth that induces buckling and Fig. 8B is the pres-
sure induced at the ASM interface due to the growth. In this
sense, growth itself is inducing buckling without any required
contraction of the ASM. Alternatively, if the ASM layer is
compliant, then some outward growth can occur, and when the
ASM contracts, the fixed outer radius requirement pushes the
outer edge back to its original position. The biggest effect of
the fixed outer radius condition is that the amount of growth is
greatly restricted. Only the lower-left triangular region in Fig.
8A constitutes valid growth. Viewing Fig. 8B, growth can be
stabilizing or destabilizing. Buckling patterns are included at
the select points, indicating again a trade off whereby the
stronger airway is also narrower.

Inverse problem. It is clearly very difficult to determine ex-
perimentally the growth rates in the different layers. However,
some geometric parameters, such as the thicknesses of normal
airway and asthmatic airways are accessible. This raises the
question: if we knew exactly how much thicker each layer of the
airway wall became during remodeling and the pressure applied
by the smooth muscle, could we determine the growth parameters
and the amount of differential growth that occurred? We refer to

this as the inverse problem: given the details of the deformation
and the buckling, can we determine the type of growth that
induced the deformation? Surprisingly, this can be done. A de-
tailed analysis of this idea is given in a companion paper (35).
Mathematically, the argument can roughly be made by counting
equations—there are four equations involved in determining the
bifurcation of a bilayered cylinder. Since there are also four
growth parameters, the inverse problem is well formulated and a
solution can in principle be found. A mathematical proof of this is
lacking, but in all of the simulations we have attempted, a solution
has been found.

We demonstrate here with a suggestive example. We start
with a reference system in the absence of growth where the
critical pressure is P* � 0.2492, the buckling mode is n � 27,
and the radii at the point of buckling are a � 0.8750, b �
0.8974, and c � 1.4336. We now ask whether growth could
occur such that each layer is twice the thickness at the point of
buckling and the buckling pressure is halved. We keep the
same value of b and double the relative thickness of each layer
by taking a � 0.8526 and c � 1.9698. Then setting P � P*/2 �
0.1246, we find that the inverse problem has the solution 
r

(i) �
1.92, 
�

(i) � 1.03, 
r
(o) � 2.35, and 
�

(o) � 1.05. Notice that the
ratio 
r/
� is greater than one in each layer. The interpretation
is that if growth is faster in the radial direction in each layer
at these particular values, the walls would grow such that the
thickness at the point of buckling is doubled while at the same
time buckling occurs at half the critical pressure compared with
the case with no growth. (Conversely, a solution could also be
found with half the thickness and double the pressure.)

Again, the rationale for the existence of these solutions
relates to the competing effects of residual stress and geometric
effects. Given the large range of possibilities with anisotropic
growth in two layers, there is sufficient flexibility in the growth
variables that residual stress effects can be made dominant. For
the example given, the growth causes a large compressive
radial stress that dominates the geometric effect of the thicker
inner layer. To further illustrate this effect, in Fig. 9 we plot the
radial stress profile in the tube. The dashed line is the stress due
to growth alone, i.e., with no pressure applied, and the solid
line is the stress at the point of bifurcation. We see that growth
creates a strong compressive stress, so that only a small amount
of additional pressure is required to induce buckling.

The point of this example is not to suggest that this exact value
of growth may be occurring in airways, but rather to demonstrate
the very significant impact that differential growth can have. If
residual stress is generated, simply measuring airway dimensions
and changes in dimensions could potentially be misleading as far
as understanding mechanical stability.

Airway size. To focus on the effect of growth, we have thus
far kept fixed the reference dimensions and stiffness ratio. Our
choice of reference parameters was motivated by the general
observation that the mucosa is significantly stiffer and thinner
than the submucosa. However, one set of parameters certainly
does not characterize all generations of the bronchial tree (22)
and the values are also dependent on where you define the
submucosa layer as ending. In this section, we briefly explore
the impact of varying the reference parameters.

To do this, we fix the growth parameters at 
(i) � 1.4, 
(o) �
1.2, and vary the inner layer thickness, outer layer thickness,
and stiffness ratio. The result is plotted in Fig. 10. As the inner
layer thickness is increased (Fig. 10A), the critical pressure

Fig. 8. Critical outer growth 
(o) (A) or alternatively critical pressure (B) as a
function of inner growth 
(i), for the model with fixed outer radius. The
buckling mode at each point is marked in A. Buckling patterns at the end points
are provided in B.
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increases and the buckling mode decreases. Observe that both
critical pressure and buckling mode vary quite significantly; for
instance starting from the base value A � 0.98, if the thickness
of the inner layer is doubled to A � 0.96, the critical pressure
increases by more than a factor of 2, while the critical mode
decreases from 29 to 14. There is a key distinction between this
result and those shown in Isotropic growth: here we increased
the inner layer thickness in the reference dimensions, which is
mechanically stabilizing, whereas in Isotropic growth it was
shown that increasing the inner layer thickness through differ-
ential growth can have the opposite effect and be destabilizing.
Interestingly, an increase in thickness of the outer layer (Fig.
10B) leads to a decrease in the critical pressure. The explana-
tion for this is that, as explained in Isotropic growth, the given
growth parameters are destabilizing because the inner layer
pushes against the outer layer and creates a destabilizing
compressive stress. Increasing the outer layer thickness results
in a harder body for the inner layer to push against, and thus
leads to further destabilization. Nevertheless, we observe that
the change in magnitude in critical pressure is quite small, and
the buckling mode is essentially unaffected. This suggests that
buckling behavior is not strongly dependent on small changes
of submucosa thickness. Finally, as seen in Fig. 10C, varying
the relative stiffness of the layers does not have a dramatic
impact either, except in the limit when the stiffness ratio
approaches unity.

DISCUSSION

Similar to previous modeling attempts, in this paper we
studied the mechanical effect of airway wall thickness on
mucosal folding and airway narrowing. The major addition in
the present work that has not been included in any prior studies
is that airway thickening occurs as a consequence of differen-
tial growth. Doing so, we were able to study changes in

Fig. 10. Buckling pressure for fixed growth parameters 
(i) � 1.4, 
(o) � 1.2, as
the inner layer thickness (A), outer layer thickness (B), and stiffness (C) are varied.
Buckling mode is labeled at each point. Length variables are measured in mm.

Fig. 9. Radial stress as a function of position after unconstricted growth, i.e.,
with no applied pressure (dashed line), and at the point of buckling. The
compressive stress generated by the growth accounts for the decrease in
stability although the walls are thicker.
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material properties, in particular stability properties, due to the
generation of residual stress.

Generally speaking, we showed that differential growth can
have a significant effect on airway buckling and therefore may
be an important contributing factor in understanding the me-
chanical behavior of airways that have undergone airway
remodeling. Note that only differential growth was considered,
because it is the competition between geometry and mechanics
that occurs as a result of the locally incompatible nature of
differential growth that leads to interesting and counterintuitive
behavior. Still, there are many ways in which differential
growth could occur, and we have explored only a few possi-
bilities here. Isotropic growth with differing rates in each layer
led to the somewhat surprising conclusion that if the stiff
mucosa grows at a faster rate than the soft submucosa, the
airway actually becomes less stable. Anisotropic growth of the
inner layer led to a strengthened airway but significantly
decreased the buckling mode. Fixing the outer radius so as to
account for the growth constriction of the smooth muscle
greatly limited the amount of growth.

Our analysis provides a general framework to understand the
mechanical effect of growth and remodeling, and our approach
gives the ability to test hypotheses regarding growth and
changes in airway stability. However, many open questions
remain before anything definitive may be said. Differential
growth provides a mechanism to explain otherwise contradic-
tory structural changes, for instance an airway wall becoming
thicker and at the same time less stable. But airway remodeling
involves more complex changes than just an increase of the
mucosal and submucosal layers. The ASM layer also gains
mass and there is uncertainty as to whether the contractile
potential changes (41). Thus whether the airways are actually
less stable after remodeling is not yet established.

An obvious question is whether any direct evidence exists of
differential growth in airway remodeling. We contend that more
information is needed to conclude whether individual airway
layers grow anisotropically, although anisotropic growth is known
to occur in arteries (20, 33). On the other hand, it seems quite
likely that different layers of the airway grow at different rates,
since the material composition varies drastically, and there is good
evidence to suggest that this form of differential growth is present
in airway remodeling (44). It should be noted, however, that in
actuality growth is complex and cannot be fully captured by
constant parameters 
i as used here, since the mass that is added
may be of a different density or type than the normally present
material (45).

If airway walls grow differentially and induce residual stress, as
we have postulated here, this can be detected by opening-angle
experiments, in which a ring of airway wall is cut radially. Any
residual stress is relieved by the cut and the ring opens up. Such
experiments are difficult and have been carried out in only one
study (31), where they reached the conclusion that human airways
are essentially free of residual stress. However, it is important to
note that none of the human lungs in that experimental study came
from humans with asthma. This is a critical distinction, because
our hypothesis is that normal airways are in a zero stress state and
that stress might be introduced through airway remodeling, in
which case only asthmatic lungs would show an opening angle.
Hence, opening angle experiments would need to be carried out
on normal and asthmatic airways to confirm or deny the possibil-
ity of differential growth.

We now turn to the shortcomings of an idealized model. The
airway is a complex structure, composed of multiple layers, which
we modeled as a bilayer cylindrical tube. This is certainly a
simplification, although the purpose is to provide insight into the
effect of growth in mucosal folding and an idealized model is
sufficient to investigate these generic effects. The two-dimen-
sional nature of the model and the plane strain assumption are
supported by the fact that folds in airways are observed as
longitudinal ridges (56). The linear stability analysis has the
drawback that it only provides information on the deformation up
to the point of the buckling. Nevertheless, knowledge of the
buckling pressure is a good measure of the “strength” of an
airway, and previous studies have shown that a tube becomes
much more compliant after buckling (54), suggesting that narrow-
ing occurs more rapidly after buckling. This is also apparent by an
increased negative slope in pressure-area curves after buckling
(54). Thus, given two airways with different buckling pressures
and all other characteristics equal, the airway with lower buckling
pressure would be prone to greater hyper-responsiveness. Buck-
ling pressure would hence seem to be a valid measure for inves-
tigating the mechanical impact of growth on airway narrowing.
Moreover, the conclusion from prior models that buckling mode
may be a significant indicator of airway narrowing seems to be
supported by our analysis as well. Still, a proper analysis of
occlusion and the change in cross sectional area would necessitate
continuing the deformation beyond the point of buckling, which
would require a much more computationally heavy numerical
approach such as finite elements. Such an analysis coupled with
growth would be an interesting direction for future modeling
attempts. One should also keep in mind that while our focus has
been on stability in terms of buckling pressure, physiologically
this pressure is generated by smooth muscle contraction; thus any
conclusions regarding growth and changes in airway response
must take into account the exact relationship between ASM
contraction and induced pressure at the airway wall as well as any
possible changes in contractile potential of the ASM.

The study we have presented is a preliminary examination of
growth and mechanics in airways and is largely qualitative.
While we have attempted to use physiologically reasonable
parameter values, exact values, in particular of the growth
parameters, are unknown to us. Regarding the buckling pres-
sure, which relates the normal force induced at the interface
due to smooth muscle contraction, experiments have found that
canine airways can generate pressures 	3 kPA (14). This
seems to be in line with our findings, as the critical pressure in
our simulations ranged from 	0.7 to 3.2 kPa. Note that these
values corresponded to a neo-Hookean material; the strain-
stiffening Fung model leads to an increase in the critical stress.

Finally, the results presented here might also suggest a future
direction of research. The structural changes associated with
airway remodeling are generally considered uncontrollable and
detrimental. However, if airways can be stimulated to grow in a
particular way, growth can potentially both strengthen the airways
against narrowing and reduce the degree of narrowing. In this
sense, an analysis such as the one presented here could serve as a
guideline for the type of growth necessary to achieve this.

GRANTS

This publication is based on work supported by Award No. KUK-C1-013-04,
made by King Abdullah University of Science and Technology (KAUST), and
based in part upon work supported by the National Science Foundation under grant

1011DIFFERENTIAL GROWTH IN AIRWAY WALL REMODELING

J Appl Physiol • VOL 110 • APRIL 2011 • www.jap.org

 on June 25, 2012
jap.physiology.org

D
ow

nloaded from
 

http://jap.physiology.org/


DMS-0907773 (to A. Goriely). A. Goriely is a Wolfson/Royal Society Merit
Award holder.

REFERENCES

1. Bai A, Eidelman DH, Hogg JC, James AL, Lambert RK, Ludwig MS,
Martin J, McDonald DM, Mitzner WA, Okazawa M, Pack RJ, Par
PD, Schellenberg RR, Tiddens HA, Wagner EM, Yager D. Proposed
nomenclature for quantifying subdivisions of the bronchial wall. J Appl
Physiol 77: 1011–1014, 1994.

2. Ben Amar M, Goriely A. Growth and instability in elastic tissues. J Mech
Phys Solids 53: 2284–2319, 2005.

3. Bando K, Yamashita D, Ohba K. Numerical simulation for mechanism
of airway narrowing in asthma. JSME Int J Series C 45: 1020–1027, 2002.

4. Boyce MC, Arruda EM. Constitutive models for rubber elasticity: a
review. Rubber Chem Technol 73: 2000.

5. Brook BS, Peel SE, Hall IP, Politi AZ, Sneyd J, Bai Y, Sanderson MJ,
Jensen OE. A biomechanical model of agonist-initiated contraction in the
asthmatic airway. Resp Physiol Neurobiol 170: 44–58, 2010.

6. Donovan GM, Tawhai MH. A simplified model of airway narrowing due
to bronchial mucosal folding. Resp Physiol Neurobiol 171: 144–150,
2010.

7. Fung YC. What are the residual stresses doing in our blood vessels?
Annals Biomed Eng 19: 237–249, 1991.

8. Fung YC. Biomechanics: Material Properties of Living Tissues. New
York: Springer, 1993.

9. Gleason RL, Humphrey JD. A mixture model of arterial growth and
remodeling in hypertension: altered muscle tone and tissue turnover. J
Vasc Res 41: 352–363, 2004.

10. Goriely A, Destrade M, Ben Amar M. Instabilities in elastomers and in
soft tissues. Q J Mech Appl Math 59: 615, 2006.

11. Goriely A, Moulton DE. Morphoelasticity—a theory of elastic growth.
In: New Trends in the Physics and Mechanics of Biological Systems,
edited by Mueller M, Amar B, Goriely A. Oxford: Oxford University
Press, 2010.

12. Goriely A, Moulton DE, Vandiver R. Elastic cavitation, tube hollowing,
and differential growth in plants and biological tissues. Europhysics Lett
91: 18001, 2010.

13. Goriely A, Vandiver R. On the mechanical stability of growing arteries.
J Appl Math: 1–22, 2010.

14. Gunst SJ, Stropp JQ. Pressure-volume and length-stress relationships in
canine bronchi in vitro. J Appl Physiol 64: 2522, 1988.

15. Hill MJ, Wilson TA, Lambert RK. Effects of surface tension and
intraluminal fluid on mechanics of small airways. J Appl Physiol 82: 233,
1997.

16. Holzapfel GA, Gasser TC, Ogden RW. Comparison of a multi-layer
structural model for arterial walls with a Fung-type model, and issues of
material stability. J Biomech Engineer 126: 264, 2004.

17. Holzapfel GA, Ogden RW. Modelling the layer-specific three-dimen-
sional residual stresses in arteries, with an application to the human aorta.
J Roy Soc Interface 7: 787–799, 2010.

18. Hrousis CA, Wiggs BR, Drazen JM, Parks DM, Kamm RD. Mucosal
folding in biologic vessels. J Biomech Eng 124: 334–341, 2002.

19. Huber HL, Koessler KK. The pathology of bronchial asthma. Arch
Intern Med 30: 1922.

20. Humphrey JD. Continuum biomechanics of soft biological tissues. Proc
Roy Soc Lond A 459: 3–46, 2003.

21. James A. Airway remodeling in asthma. Curr Opin Pulm Med 11: 1–6,
2004.

22. James AL, Paré PD, Hogg JC. The mechanics of airway narrowing in
asthma. Am Rev Respir Dis 139: 242–246, 1989.

23. King GG, Paré PD, Seow CY. The mechanics of exaggerated airway
narrowing in asthma: the role of smooth muscle. Resp Physiol 118: 1–13,
1999.

24. Kuwano K, Bosken CH, Paré PD, Bai TR, Wiggs BR, Hogg JC. Small
airways dimensions in asthma and in chronic obstructive pulmonary
disease. Am Rev Respir Dis 148: 1220–1225, 1993.

25. Lambert RK. Role of bronchial basement membrane in airway collapse.
J Appl Physiol 71: 666–673, 1991.

26. Lambert RK, Codd SL, Alley MR, Pack RJ. Physical determinants of
bronchial mucosal folding. J Appl Physiol 77: 1206–1216, 1994.

27. Lee MML, Chien S. Morphologic effects of pressure changes on canine
carotid artery endothelium as observed by scanning electron microscopy.
Anat Rec 194: 1–14, 1978.

28. Liao D, Zhao J, Yang J, Gregersen H. The oesophageal zero-stress state
and mucosal folding from a giome perspective. World J Gastroenterol 13:
1347–1351, 2007.

29. Lin LE, Taber L. A model for stress-induced growth in the developing
heart. J Biomech Engineer 117: 343–349, 1995.

30. Lu X, Zhao J, Gregersen H. Small intestinal morphometric and biome-
chanical changes during physiological growth in rats. J Biomech 38: 2005.

31. McKay KO, Wiggs BR, Paré PD, Kamm RD. Zero-stress state of intra-
and extraparenchymal airways from human, pig, rabbit, and sheep lung. J
Appl Physiol 92: 1261–1266, 2002.

32. McParland BE, Macklem PT, Pare PD. Airway hyperresponsiveness:
From molecules to bedside. J Appl Physiol 95: 426–434, 2003.

33. Menzel A. Modelling of anisotropic growth in biological tissues. Biomech
Modeling Mechanobiol 3: 147–171, 2005.

34. Moore BJ, Hilliam CC, Verburgt LM, Wiggs BR, Vedal S, Paré PD.
Shape and position of the complete dose-response curve for inhaled
methacholine in normal subjects. Am J Respir Crit Care Med 154: 1996.

35. Moulton DE, Goriely A. Circumferential buckling instability of a grow-
ing cylindrical tube. J Mech Phys Solids; doi:10.1016/j.jmps.2011.01.005.

36. Niimi A, Matsumoto H, Amitani R, Nakano Y, Mishima M, Minaku-
chi M, Nishimura K, Itoh H, Izumi T. Airway wall thickness in asthma
assessed by computed tomography. Am J Respir Crit Care Med 162:
1518–1523, 2000.

37. Noble PB, Sharma A, McFawn PK, Mitchell HW. Airway narrowing in
porcine bronchi with and without lung parenchyma. Eur Respir J 26: 804,
2005.

38. Ogawa Y. Study on the strength of human lower air-passages. J Kyoto
Prefect Univ Med 66: 781–800, 1959.

39. Ogden RW. Non-Linear Elastic Deformation. NY: Dover, 1984.
40. Ogden RW, Schulze-Bauer CAJ. Phenomenological and structural as-

pects of the mechanical response of arteries. ASME Applied Mech 242:
125–140, 2000.

41. Paré PD, McParland BE, Seow CY. Structural basis for exaggerated
airway narrowing. Can J Physiol Pharmacol 85: 635–638, 2007.

42. Politi AZ, Donovan GM, Tawhai MH, Sanderson MJ, Lauzon AM,
Bates JHT, Sneyd J. A multiscale, spatially distributed model of asth-
matic airway hyper-responsiveness. J Theor Biol 266: 614–624, 2010.

43. Redington AE, Howarth PH. Airway wall remodelling in asthma.
Thorax 52: 310–312, 1997.

44. Roberts CR. Is asthma a fibrotic disease? Chest 107: 111S–117S, 1995.
45. Roche WR, Williams JH, Beasley R, Holgate ST. Subepithelial fibrosis

in the bronchi of asthmatics. Lancet 333: 520–524, 1989.
46. Rodriguez EK, Hoger A, McCulloch A. Stress-dependent finite growth

in soft elastic tissues. J Biomech 27: 455–467, 1994.
47. Seow CY, Wang L, Pare PD. Airway narrowing and internal structural

constraints. J Appl Physiol 88: 527, 2000.
48. Taber LA. Biomechanics of growth, remodeling and morphogenesis.

Appl Mech Rev 48: 487–545, 1995.
49. Taber LA. Biomechanical growth laws for muscle tissues. J Theor Biol

193: 201–213, 1998.
50. Vandiver R, Goriely A. Tissue tension and axial growth of cylindrical

structures in plants and elastic tissues. Europhys Lett 84: 58004, 2008.
51. Vignola AM, Mirabella F, Costanzo G, Di Giorgi R, Gjomarkaj M,

Bellia V, Bonsignore G. Airway remodeling in asthma. Chest 123:
417S–422S, 2003.

52. Wang ASD, Ertepinar A. Stability and vibrations of elastic thick-walled
cylindrical and spherical shells subjected to pressure. Int J Non-Linear
Mech 7: 539–555, 1972.

53. Wang I, Politi AZ, Tania N, Bai Y, Sanderson MJ, Sneyd J. A
mathematical model of airway and pulmonary arteriole smooth muscle.
Biophys J 94: 2053–2064, 2008.

54. Wiggs BR, Hrousis CA, Drazen JM, Kamm RD. On the mechanism of
mucosal folding in normal and asthmatic airways. J Appl Physiol 83:
1814–1821, 1997.

55. Xu G, Bayly PV, Taber LA. Residual stress in the adult mouse brain.
Biomech Modeling Mechanobiol 8: 253–262, 2009.

56. Yager D, Cloutier T, Feldman H, Bastacky J, Drazen JM, Kamm RD.
Airway surface liquid thickness as a function of lung volume in small
airways of the guinea pig. J Appl Physiol 77: 2333–2340, 1994.

57. Yang W, Fung TC, Chian KS, Chong CK. Instability of the two-layered
thick-walled esophageal model under the external pressure and circular
outer boundary condition. J Biomech 40: 481–490, 2007.

1012 DIFFERENTIAL GROWTH IN AIRWAY WALL REMODELING

J Appl Physiol • VOL 110 • APRIL 2011 • www.jap.org

 on June 25, 2012
jap.physiology.org

D
ow

nloaded from
 

http://dx.doi.org/10.1016/j.jmps.2011.01.005
http://jap.physiology.org/

