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Abstract

We consider the Fourier transform of tubular volume densities, with arbitrary
axial geometry and (possibly) twisted internal structure. This density can be
used to represent, among others, magnetic flux or the electron density of
biopolymer molecules. We consider tubes of both finite radii and unrestricted
radius. When there is overlap of the tube structure the net density is calculated
using the super-position principle. The Fourier transform of this density is
composed of two expressions, one for which the radius of the tube is less
than the curvature of the axis and one for which the radius is greater (which
must have density overlap). This expression can accommodate an asymmetric
density distribution and a tube structure which has non-uniform twisting. In
addition we give several simpler expressions for isotropic densities, densities
of finite radius, densities which decay at a rate sufficient to minimize local
overlap and finally individual surfaces of the tube manifold. These simplified
cases can often be expressed as arclength integrals and can be evaluated using
a system of first-order ODEs.

PACS numbers: 02.30.Nw, 02.40.Hw, 02.40.Ma, 87.15.bg, 87.64.Bx, 52.30.Cv

(Some figures may appear in colour only in the online journal)

1. Introduction

Tubular densities are often used to represent physical systems including biopolymer molecules
[40, 6, 5, 22], magnetic flux tubes (in the convective region of the sun [37, 41, 34, 31], in
the coronal region [43, 44], in dynamo theory [45, 33, 3]; and mechanical and biological rods
[15, 35, 46, 36, 47]). One way to probe or characterize the geometry of these objects is by
using their spectral properties such as the Fourier transforms of their distributions.

In the case of biopolymers the density function would represent the electron density. A
particularly important problem is the possibility of density overlap, which corresponds to the
interaction of the atoms comprising the molecule. The radius of electron density is not required
to be restricted, though it would drop to a negligible value at a significant radial distance from
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Figure 1. A depiction of the tubular manifold used in this note. (a) A curve representing the tubular
axis. It is surrounded by a set of circles which lie in the planes normal to the curve’s tangent
direction. If we consider a continuous set of such circles, we obtain the tubular surface depicted
in (b). We can create a manifold constructed from a set of tubular surfaces as shown in (c). A
continuous set of such surfaces constitutes the type of tubular manifold, used in this note to define
a tubular density.

the axis. By comparison, for material rods, where the density would represent material points
which cannot overlap through deformation, the tube would necessarily have a finite radius
and a restriction on both the bending it can undergo and its overall shape so that it does not
overlap. Recent theoretical work on biopolymers has linked these two physical scenarios. In
particular various authors have provided evidence that one can characterize the geometry of
known secondary protein structures, using a tubular electron density model for which the
density has a finite radius and is forbidden to overlap (see [40, 5, 6] and references therein).
Briefly, the idea is that the geometry of the protein can be understood in terms of self-attraction,
due to the need of hydrophilic sections of the molecule to be shielded from the surrounding
water molecules, and the electromagnetic self-repulsion of the electron density. The self-
repulsion is represented by the radius of the tube. It has been shown that this simple model
predicts the formation of the ubiquitous alpha-helix structure, as a tube of finite radius which is
helically coiled in a compact fashion [4]. Another aspect of biopolymer structures, specifically
proteins, is that a significant percentage of known tertiary structures are composed of helical
geometries, specifically the alpha-helix and beta-sheet structures. According to Fitzkee et al,
‘approximately half the structure of folded proteins is either «-helix or g-strands™ [16]. Thus,
one could characterize significant amounts of complex biopolymer structure in terms of a basic
helical tubular units which have been rotated and translated in space. This idea was used by
Hausrath and Goriely [21] to propose a continuous model for protein molecules which could
be used to search the space of possible tertiary protein geometries in an efficient fashion.

Mathematically, a tubular surface is defined by a spacecurve, representing the axis of the
surface, and a set of circles centred on the axis and lying in its normal plane (see figures 1(a)
and (b)). If we restrict the radius of the circles, it is always possible to define the tube such that
there is no overlap. That is to say each point on the tube could be described by a unique set
of parameters, the arclength along the curve s, the radius of the circle R and the angle 8 made
in the normal plane by a radial line joining the axis to a point on the circle. By varying the
radius to the maximum value we can define a three dimensional manifold, constructed from
a foliation of the tubes, on which there is a one-to-one relationship between the parameter
space and the space in which the tube is embedded (see figure 1(c)). Of course if we do not
restrict the radius of this manifold the parameter uniqueness of each point is (generally) lost
due to overlap. In what follows we are interested in tubular manifolds which may or may not
overlap.
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One can create a simple and versatile continuum model by defining a density on this
tubular manifold as a continuous function f(s, R, 6), which assigns a value to each point
(s, R, ). The model would then be completed by providing rules which determine both the
geometry of the tube structure and the value of the density.

The structure of the tube itself can be important. In general magnetic flux tubes have an
internal geometry, in that the field lines composing the tube tend to be twisted (a fact discussed
in the references above). Theoretical work suggests that this inherent twisting is necessary for
the tubes to remain stable in the sun’s convective region [37, 30]. Moreover, a critical amount
of twisting has been linked to instability of the flux tube structures in the coronal region
[43,44]. Such inherent twisting can easily be incorporated into the tubular manifold description
(see section 2).

The Fourier transform often plays an important role in various aspects of the theory
surrounding the model. For biopolymer studies it is the mathematical tool underpinning the
majority of structural identification techniques [14]. For this continuum model the relevant
techniques would be medium/low resolutions methods such as small angle X-ray scattering
(SAXS) [42] and fibre diffraction [27] (see Hausrath and Goriely [22] for a discussion on the
relevance of the continuous model in relation to imaging). In both cases the sample material
is irradiated, and the resulting diffraction pattern can be interpreted in terms of the Fourier
power spectrum of the model representing the biopolymer density.

In flux tube modelling the Fourier transform is used to characterize the energy and the
flux-weighted geometry (helicity) of the flux tube [32, 31, 3]. The helicity of a flux tube can be
expressed in terms of the amount of twisting about the tube axis of field lines comprising tube;
and the global geometry of the tube’s axis (the writhing) [10, 11, 8, 9]. Particular theoretical
importance is given to the scale of the helicity, where the scale can be interpreted in terms of
the value of the Fourier wavevector k. Small scales are associated with the twisting, the large
scales correspond to the changes in global geometry (writhing) [17, 7, 3]. Possible models of
the solar dynamo indicate that the development of dynamo fields in the sun is characterized
by a conversion from small scale twisting to large scale writhing helicity [45, 33, 7, 3].

It is clear that the characterization of the global geometry of twisted and untwisted tube
densities plays a central role in many models. One can, given a specific radius for the tube,
define a restriction on the axial geometry of the tube which prevents local overlap due to
extreme curvature of the tube (an example of such overlap is labelled local curvature on the
tube shown in figure 2(b)). However, tubes can still self-overlap even if this condition is satisfied
(see the sections labelled non-local overlapin figures 2(a) and (b)). A more restrictive condition
on the axis geometry has been defined [19], which ensures there is no overlap. Both measures,
intrinsic to the axis curve, underpin the tube biopolymer models discussed previously and can
be incorporated as restrictions on our simple model. One can also relate the degree of twisting
of the tube structure to its axial geometry. For tubes which close on themselves the sum of the
writhing and twisting is a known invariant to deformations of the tube which prevent it from
self-intersecting (see, e.g., the proof of proposition 5 in [1]). So as the tube axis deforms the
total twisting of the tube must also alter to conserve the total sum. This conservation law is an
important consideration in magnetic flux tube modelling [8, 18, 38]. Open analogues of this
relationship also exist for open tube structures [9]. As shall be discussed, this conservation
law could also naturally be applied to our density model.

The Fourier transform of tubular densities has not received much attention with regards to
the geometric considerations discussed in the previous paragraph. Asgahri—Targhi and Berger
[3] considered the twist-writhe decomposition of the Fourier spectrum of a magnetic flux
tube of uniform density. Their method for evaluating the transform is a numerical method
which assumes that the tube can be defined in a box (a subset of R?) with periodic boundary
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Figure 2. A depiction of the overlapping of tubular layers due to the non-zero curvature of the
tube structure. The two figures have the same axis but differing radii. (a) There is only one type
of overlap which occurs due to points on the tube’s axis being separated by less than the tube’s
radius, this is termed non-local overlap. (b) The non-local overlap has increased. In addition local
overlap has occurred due to the extreme bending or curvature of the axis. Both types of overlap are
determined by the axial geometry.

conditions, which would require the tube’s to be closed (no net flux in any specific direction
over the volume of evaluation). The study was limited to the case in which the tubes were
thin with no possibility of overlap. With regards to biopolymer literature most studies have
concerned the transform of line densities, based on the celebrated transform expression for an
infinite length helix and coiled coil [12, 13, 28], rather than the integration of volume densities.
As such the issue of the effect of density overlap on the transform has not been considered.

There are several advantages to the model and transform expressions we propose in this
note. First, we can consider arbitrary continuous densities and complex tubular geometry
and define general transform expressions which cover all cases. In addition the expression
can be subjected to an affine transformation in a simple manner; one might require this for
complex biopolymer structures constructed form repeat helical units. Second, the model can
be subjected to the type of topological and global geometrical restrictions discussed above.
This allows the general transform expressions derived in this note to be applicable to a good
range of physical applications. Third, the non-local density overlap is automatically calculated
due to the fact that we define a density distribution which utilizes the superposition principle
(see section 3).

The structure of this paper is as follows. In section 2 we introduce aspects of differential
geometry of curves. We discuss the general form of the tubular structure which provides the
frame for the molecular density. This includes a discussion on the choice of representing the
tube manifold (the chosen frame) and how arbitrary twisting rates can be included. We discuss
and define the concepts of local and non-local overlapping of the tube structure. Finally, we
discuss the relationship between the tube Jacobian term and the concept of local overlapping.

In section 3 we define a general density distribution (12). We first discuss the Fourier
transform of tempered distributions, as our density definition falls into this particular class.
The definition of the particular density distribution we employ concerns the rest of this section.
This discussion incorporates the definition of a density function as a rapidly decreasing function
(along the radial direction). We then introduce the full density, the combination of the density
function and the tubular geometry which are convoluted using a § distribution. Finally we
define the effect of applying an affine transformation to this density distribution (14).
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ds;

Figure 3. A depiction of the tube parameterization. The backbone curve r is surrounded by a
tube of radius R (shown as an opaque surface). The moving orthonormal frame (d, d, d3) is
depicted. We see an example of a vector y(s’, Ry, ) defined by a specific choice of 6, given s = s’
and R = R,. The set & € S' defines a set of vectors whose tip traces out the circle shown. The
set of circles centred at r(s), s € [0, L] is a tube surface of radius R; whose axial geometry is
defined by r.

In section 4 we derive the most general expression for the Fourier transform of a tubular
density. We split the derivation into two parts. First, the contribution to the transform from
layers of the tubular density whose radius is such that there is no local overlap. The most
general result in this case is derived (26), we give explicit formulas when the density function
is axially symmetric (27). We also derive an expression for a tube whose density is isotropic
and constant in value. Second, we derive the contribution in the case in which there is local
overlap of the tube. Finally we detail the general results for the Fourier transform of a single
tubular surface, drawn from the full tubular manifold. These results are simple extensions of
the more general full volume transforms.

In section 5 we define conditions on the radial rate of decay of the density function in
order that we can approximate the full transform accurately by only evaluating the contribution
without local overlap. This greatly simplifies the required calculation.

2. Definitions and geometry

2.1. The frame

We define the tube’s axis as a non self-intersecting curve r(s) : [0,L] — R, r e
c? ([O, L]; R3), where s is the arclength. The tube’s geometry is defined by a pair (r(s), d; (s))
where d; (s) : [0, L] — R d; € C' ([0, L]; R?), is a unit vector such that r'(s) - d;(s) = 0.
A frame is a right-handed orthonormal basis of R3, (d,(s), da(s), d3(s)), formed from the
tangent vector d3(s) = r'(s) and a third vector d,(s) = d3(s) x d;(s). The unit vectors
d;(s), i = 1, 2, span the plane perpendicular to dj3 as depicted in figure 3.

2.2. The tube

We define amap y(s, R, 0) : [0, L] x Rt x S — R3 as
y(s,R,0) =r(s) + R(d;(s) cosd + dy(s) sin6). (1)
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The differentiability of this map follows from the differentiability of r and d;. Let ¥ be the
set of all such maps. For fixed values s = s’ and R = R; the set of points defined by y for all
0 e S! define a circle of radius R;, centred at r(s). The set of such circles for all s € [0, L]
constitutes a tubular surface (see figure 3) and the set of tubular surfaces for all R, € [0, R,,]
defines a tubular manifold. The density distribution is defined on this manifold. Since both L
and R,, may be unbounded, this manifold is either a subset of R3 or the entire space. Within
our framework, the triple {r, d;, R,,} defines a particular tubular manifold.

2.3. Structure equations

The evolution of the frame is determined by the rate of change in orientation of each vector d;
along s. This can be written as the vector product d;(s) = u(s) x d;(s). The vector u is known
as the Darboux vector and can be specified by three real valued functions u;(s), j = 1,2, 3,
where

u(s) = uy (s)di (s) + uz(s)d2(s) + uz(s)d3(s). 2

Here u; and u, represent curvatures of the the frame, so that ,/u% + u% = «k, the principal
curvature. The function u; determines the rate at which the pair (d;, d;) rotates about dj
(termed the twisting rate). We have the following system of ordinary differential equations:

d| = —upds + usd,,

d;, = uyd; — usd,

d; = —uydy + updy,

r =ds. 3)

For a given Darboux vector u, length L and radius R,,, a tube manifold is defined by the
solution of (3), up to a global translation and rotation determined by the initial conditions.

2.4. Choice of frame

Different choices of the vector d; correspond to different frames. For instance the Frenet frame
is obtained by the choice d| = d’3 / Id’3 |, the normal vector, and d, = d3 x d; is the binormal
vector. Equations (3) reduce then to the well-known Frenet—Serret equation:

d/3 = Kd],

d/l = —kd3 + td,,

d/2 = —‘L'dl,

r = d3. (4)

The torsion 7 is defined as 7(s) = d3(s) - (d;(s) x d{(s)) and determined entirely by the
tube’s axial geometry. Hausrath and Goriely [21] have shown that the Frenet frame is a
convenient choice of basis for searching the fold space of possible biopolymer backbone
geometries in the case in which we assume they are constructed from helical segments, as the
curvature and torsion of the helix are constant, leading to explicit solutions of the Frenet—Serret
equation (4). The Frenet frame has drawback of being ill-defined if the derivative of the tangent
vector vanishes.

Another consideration is the possibility of rotation of the frame which is independent of
the axis geometry. This is important for magnetic flux tubes and twisted elastic rods in which
the bulk density surrounding the axis can rotate independently of the axial deformation. The
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twist can be described by rotating the Frenet basis, i.e.
d; = cos(w(s))N + sin(w(s))B,
d> = —sin((s))N + cos(w(s))B.

Here the differentiable function w controls the additional rotation of the frame on top of the
rotation of the Frenet basis due to torsion. If we identify the rotated frame (5) with the director
basis, then we have the following expressions for u;:

(&)

u;(s) =k sin(w), wua(s) =k cos(w), uz(s) =1+ w(s). (6)

The functions u; parameterize the set of rotations which define the tube’s kinematic structure.
The representation given by (6) is one possible decomposition of these parameters. It has been
used by number of authors as the individual components have well established geometrical
interpretations which allow them to be linked to the physics of the model for which they are
used. In magnetic flux tube modelling for example Ricca [39] used a rotated Frenet framing
to describe a twisted flux rope, the function w was used to approximate the twisted internal
structure of the tube i.e. the contribution to the twisted structure which is independent of
the tubes axial geometry. It was shown that inflexion configurations (those with vanishing
curvature «) cannot be equilibrium structures. In elastic rod modelling the rotation given by
w is referred to as Love’s twist, after A E H Love, and plays a significant role in problems
involving elastic rods [2], in particular allowing for the equilibrium of axially straight twisted
structures. That said the expressions (6) are not the only decomposition of the functions ;.
For example in elastic rod modelling both quaternion ([25, 23]) and Euler angle ([35, 46])
representations have been used as a means of parameterizing the rod’s kinematics. In both
cases expressions for the basis {d;} in terms of the parameterizing functions are derived, the
system (3) can then be used to obtain expressions for the triple (u;, uy, u3).

One might also consider the application of the twist-writhe topology to such structures.
Berger and Prior [9] have shown that one can apply a directional frame which allows for
the definition of directional analogues of the writhing and twisting measures discussed in the
introduction.

In this note we define all expressions using the basis (d;, d;, d3) without specifying any
particular parameterization. The effect of the choice of frame is shown to be limited to defining
the functions (u;, uy, u3) and the evaluation of a function which involves the dot product of
the Fourier vector k and the pair (d;, d;) (section 4.1).

2.5. Tube overlap

Readers familiar with the differential geometry of tubular structures will be aware that, unless
R has a restricted range, or the axis curve r is a straight line, there will be overlap of the tubes
[24]. That is to say the tube map (1) is not generally injective and there are at least two distinct
parameter sets, (s;, R;, 0;) and (s}, R;, 6;), for which y(s;, R;, 0;) = y(s;, R}, 0;) (see figure 4).
There are two ways in which this overlap can occur, locally and non-locally.

The local overlap can be defined from the curvature « at a point r(s;). The inverse of « (s;)
can be interpreted geometrically as the radius R; of a sphere of which a single surface point
touches the curve at r(s;). This radius represents a critical radius for a tube surrounding r
beyond which there is overlap [29]. For R > R; the circles in an e-neighbourhood of s; overlap
(see figure 5). We refer to overlap where € is vanishingly small as local. In particular the
definition refers to the limit € — 0, which corresponds to the vanishing of the tube manifold
Jacobian at s;. This is an important issue in our analysis of the transform and will be discussed
in the proceeding section.
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Figure 4. A depiction of the overlap of tubes from differing parameter values of the tube structure
y(s, R, 0). The axis curve r is shown in red. We consider a point in the ambient space marked as a
blue dot. The two axis curve points corresponding to parameter sets (s, Ry, 61) and (s», Ry, 6,) for
which (12) is non-zero at this point are marked. The circular cross-section of the tube corresponding
to these sets are shown to overlap at the point. Also displayed are the Frenet frame pair (d;, dy) at
r(s;) and r(sy).

overlap

Figure 5. A depiction of the dependency of local overlap on the tube’s radius and curvature. The
red curves lying inside the tube represent an axis curve r(s) = (sin(xs), cos(ws), s), for the range
s € [0, 1]. The curvature is «(s) = 1, Vs € [0, 1]. (a) The tube’s radius is R = 0.3, there is no
overlap. (b) The radius is 1, thus matching the critical curvature condition. We see the tube has an
overlap point labelled on the figure. Because of the constant curvature this point is a site of local as
well as non-local overlap. The circles labelled (i) and (ii) overlap and are in an e-neighbourhood of
each other (their separation is exaggerated so as to be visible), this type of overlap is called local
overlap in our discussion. Circle (iii) also overlaps circles (i) and (ii), however, as it is not in their
s neighbourhood this overlap is classed as non-local, based on the definition in the text.

All other overlaps are referred to as non-local (see figures 2 and 5). Such overlap is a
result of the global geometry of the curve and does not necessarily require that the curvature
is particularly high at any point, though it must be non-zero for some s domain. Gonzalez and
Maddocks [19] extended this concept of the critical radius of curvature, to define the global
radius of curvature, a critical radius for the tube structure below which no overlap occurs. We
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do not discuss this global condition in detail here as it does not explicitly affect the form of
our general expressions.

2.6. The tube Jacobian

The definition of the tubular density requires that we include the Jacobian of the tube. We shall
consider both surface and volume Jacobian terms. We have

ay(s, R, 0) )

m =R(1 — R(upcos® — u; sinf)). (7)
The surface element Jacobian is identical with a fixed R value. Alternatively we can write the
two curvatures in polar coordinates as

ui(s) =k (s) sinp(s), ®)
ur (s) = k(s) cosp(s). &)
Here, ¢ (s) is real valued and differentiable. Using this convention we have
ay(s, R, 0)
=|——=|=R(1—R 0 . 10
9. R.0) ( Kk cos(6 + ¢)) (10)

The specific form ¢ takes depends upon the construction of the frame. For example for the
rotated Frenet frame defined in (5) we have ¢ = w.

In our definition of density we require that the Jacobian is taken in absolute value to
ensure positivity of the density when the manifold overlaps. For R > 1/k, the function |J|
is non-differentiable with respect to 6. This corresponds to the existence of local-overlap.
Non-local overlap can occur for R < 1/« [19]. It is only the presence of local overlap that
requires special handling when integration over 6 is performed.

3. Density and Fourier transform definitions

3.1. The Fourier transform of Distributions

Since we consider the Fourier transform of densities we are interested in the Schwartz space
of rapidly decreasing functions S(R") = {f € C*(R") | | flla.p < 00, Yo, B}, where
1 fllep = sup [x*DP f ().
xeR?

Here @ and B employ the multi-index notation and D is the partial differential operator
[26]. Tempered distributions constitute the space of all continuous linear maps S’ (R") =
{n: S(R") — C}.

We denote points in the ambient space A as x € R3. Points in the Fourier space K are
denoted k € R3. In what follows we shall be interested in the Fourier transform, a continuous
isomorphic map F : S'(R?) — S&'(R?) defined by

F(k) = dx p(x) e'**. (11)

7 .

The restriction to tempered distributions means that F' is invertible,

1 .
=—— [ dkF(k)e k¥,
m(x) \/E/)C (k)e

and satisfies Parseval’s theorem

/Iu(x)lzdx=/ |F (k)|* dk.
A c
See e.g. [26].
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3.2. The tubular density distribution

We define our volume densities using a convolution of a scalar density function and a delta-
distribution. Let p(s, R, 6) € S(R?) be the density at a point on the tube manifold. To define
the physical density at a point x € .4 we need to consider all values {(s;, R;, 9;)} for which
y(s;, R;, 0;) = x. Then the density is the super-position of all such parameter values. That is
the density at a point x € A is generated by a function p on a tube manifold {r, d;, R,,} via a
continuous mapping i : S(R*) x ¥ x R — R, where

L Ry, 2
wIp, ¥, Rnl(X) =f ds/ dRR/ 0|1 — Rk cos(d + ¢)|p(s, R, 0)8(x — y(s., R, 0)).
0 0 0

(12)
This mapping is a tempered distribution since it is a bounded linear map of a Schwartz function.
The absolute operation on the Jacobian is necessary to ensure the density preserves the sign
of p(s, R, 0) for all overlapped sections. We give a simple illustrative example of how this
density is defined. Consider a radially unbound tube y.(s, R, 0) = (Rcos(8), Rsin(9), s),
which is defined with a rectilinear coordinate system and r(s) = (0, 0, s), thus / = R. We
choose a density pexp(s, R, 0) = ae’ﬂRz, where « and B are constants. For a point in the
ambient space x = (1,0, 1) there is a single contribution from p at (s,R,0) = (1,1, 0),
giving u(x) = ae=/#)_ In this particular case there is one single parameter set (s, R, #) for
each point in A, and applying u to all x € A defines a cylindrically symmetric Gaussian
density profile centred on the line (0, 0, s).
We can also consider the density restricted to a single tube surface of radius R;. In this
case we define a mapping i, : S(R?) x ¥ x R* — R by

L 2
us[p,y,Rsux):Rs/ ds/ 4811 — Ryic cos(8 + §)|p(s, Ry, 0)5(x — y(5. R, 0)).  (13)
0 0

Once again this mapping employs the super-position principle where there is overlap.

3.3. Affine transformations

If the density is known for a given tube manifold {r, d;, R,,} and function p, it is of interest to
know the corresponding density after a rigid body motion of y. To do this we define a constant
linear transformation R € GL(3,R) and a constant translation x. € R>. The affine map of
a vector x € R? is then specified by x — Rx + x. and the volume density u can then be
written as

,bL[,O, Ry + Xc, Rin](X)

L Ry 2
:f ds/ dRR/ df|1 — Rk cos(6 +¢)|pd (x— Ry —X¢) - (14)
0 0 0

In section 4 we shall show that the general expression for F[u] can incorporate such a

transform in a particularly simple fashion. The same definition can be applied to the surface
transform (13).

4. Fourier transform of u

Now that our density is defined we derive expressions for its Fourier transform. We consider
a tubular density subject to an affine transformation. Inserting (14) into (11) we have

1 L R, 2 -
— dx/ dsf dR/ do|J| p8(x — Ry — x.) e™%,
V2 /A 0 0 0

eik~xC L R, 2w ik Rs)
= ds/ dR/ dojJ| pe™ "™V, (15)

N2 /o 0 0

F[,O, Ry + X, Rm](k) =

10
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This is equivalent to a change of the basis of Fourier space. As discussed in section 2.6 we
must evaluate the R integral on two distinct domains, R < k and R > « (assuming R,, > k).
On the domain R > « there are two points of € S! for which 1 — kR cos(f + ¢) changes
sign. This requires that we split the 6 part of the integration on this R domain. As « will in
general have dependence on s, the length of the three & domains will vary with s.

The general single integral expression we derive can be written as a sum of two functions.
One representing the contribution from the subset of the tubular manifold for which there is
no local overlap (R < 1/«) and one for its complement (R > 1/«k).

4.1. No local overlap R < 1/k

We first consider F,, (no overlap), the contribution to (15) with R < «:
Fuolo, Ry + X¢, Ry ](K)

elfxe ot ik-R Ve o {iRk-R(d; cos f+d, sin6)}
— dse® ’/ dRR/ d9 (1 — kRcos(8 + ¢))p e!FE(dicosttdasing))
V2w Jo 0 0
(16)
where we have used (1). Since p is periodic in 6, we have
p = an(s.R)cos(nd) + by(s. R) sin(nd), (17)

n=0
where a, (s, R), b,(s, R) € S(R?). We now consider the @ part of the integral. To simplify we
make the change of variables & = ¥ + § and apply the following substitutions:
C
C =k-Rd;, G =k-Rdy, tan(s:—c—l, c=,C+cC (18)

2
After applying these substitutions and (17) to (16) we must evaluate an infinite sum over n of
the following integrands:

27 +48
/ cos(ny +nd)(1 — kRcos(y + ¢ + 8)) &RV dy,
B

248
/ sin(nyr + nd)(1 —KRCOS(I//—|—¢+3))eiRCsim/;dw'
8

We emphasize that ¢ only has a dependence on s and is treated as constant for what follows.
If we choose § = m — ¢ and re-label ¥ — 6, the total 0 integral can be constructed from the
following two integrals:

3r—¢
(=) "ay / (cos(nf) cos(ng) + sin(nd) sin(ng))(1 + kR cos ) eRCWsin? 49, (19)
T—¢
3r—¢ . .
(=1)"b, f (sin(nB) cos(ng) — cos(nd) sin(ng)) (1 + kR cos §) eREWsnb qg (20)
T

We show in the appendix that (19) and (20) can be written in terms of Bessel functions, and
(16) written as

1k X¢

1/k
Faolp, RY + Xc, Rl (k) = \/2_2( 1)”/ dse“"R'/O dR R 27 J,(RC)

(cos(n¢) + — sm(n¢> ) b, (— sin(ng) + lK—n cos(nqb)) if nis even
¢ @1

a, (1 sin(ng) + — cos(n¢)> + b, (1 cos(ngp) — — sm(n¢)> if n is odd



J. Phys. A: Math. Theor. 45 (2012) 225208 C B Prior and A Goriely

The R integral is of the form

R/
Lol f1(s, R) 2/ dRR f(R, 5) Ju(C(s)R). (22)
0

General analytic results exist for particular forms of f (see [20] for example), notably when f
is a Gaussian. We define a function A (n, s) as

An(s) (23)

1\ <I>1(s)1m,[an](s, l/K) + <DZ(S)Irw[bn](sa I/K) ifnis even,
= (-1)'V2r {—i@z(s)lm,[an](s, 1/k) + i®1 () Lo[ba)(s. 1/k) i nis odd,

ikn
o, = <cos(n¢) + < sin(n(p)) , 24)

ikn
o, = (— sin(ng) + < cos(n¢)> . (25)

Note that the functions @, express the effect of the additional rotation ¢ on the transform.
Finally we can express Fy, as

00 L
Pl RY %o R0 =4 3 [, 4, 26)
0

n=0

4.1.1. The axially symmetric case. In the case in which p has no dependence on 6 we
only retain the n = 0 terms from the Fourier series. Writing ag(s, R) = p.s(s, R) (axially
symmetric), we have

L
Foolpas, RY + X¢, Ryl(k) = e'** f dshg e* ™, 27)
0

4.1.2. Constant density and restricted radius. We can obtain a simple result if the density
function has a constant value (p. = D, with D, constant). Using the result [20],

RJ1(CRy)
C
and assuming Ry, is such that R, < 1/k (s), Vs, we have
DR, %% L “ Ji(CR,,) e*&Rr
V2 o C .

)

R
/ dRRJ,(CR) =
0

F[pc, Ry + X (K) = Fuolpoc, Ry + x.](k) =

(28)

4.2. Tubes with local overlap R > 1/k

Next we need to evaluate the contribution of the density on the subset of the manifold on which
there is local overlap. That is, for values R > 1/«. The substitutions (18) are not affected by
the modulus sign, applying them we have

b & Lo (R
Filp Ry + 3. Ral(k) = S= 31" [ aseh ™ [ arr
O C 2 nX:(; 0 1/k

/n dé (a, cos(n(@ — ¢)) + by, sin(n(@ — ¢))|1 + kR cos | eREsin?, (29)

12
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We have also used the integrand’s periodicity to alter the range of integration as in the previous
section. The 6 integrand must be split into two parts as the Jacobian becomes negative for
some @ subsets of S'. In particular 1 4+ xR cos(f) is 0 on 6 € [—m, ] when

0 = L0, (30)

1
0, = cos™! (——) ,
Rk

which is well-defined as —1/(Rx) is restricted to the range [0, —1] for R > 1/x. Using this
knowledge (29) can be written as

eik~xC S L )
F[p, Ry + x¢, R,](K) = —1 "/ ds ek Rr
oo, Ry + Xc, Ry] (k) mg( ) | dse
R/YI
X / dRR [a, (©F,, — ©F,) + b, (05, — ©¢,)]. 31)
1/k

Where @g /s.n (8, R) are bounded functions representing the nth contribution to the the
total 6 integral on the domain 6 € [—6,,, 6,,], for which kRcos6 > —1. @g/s,n(s, R) are
bounded functions representing the nth contribution to the the total 6 integral on the domains

0 el[—m,—06,)and 0 € (0, 7], for which kRcos6 < —1. The functions ®€/S,n (s, R) are

am . .
O (s, R) = / cos(n(0 — ¢))(1 + kR cos0) R0 dg | (32)
Om o
©g ,(s,R) = / sin(n(@ — ¢))(1 + kR cos ) ¥ dg. (33)
_Qm

The functions ®g/S,n(S’ R) are

ey, (s,R) = /

-7

cos(n(® — $))(1 + kRcos ) ef"? do

+f cos(n(@ — ¢))(1 + kR cos8) eREsinf g9 (34)
9m

_0771 ' '
@IS\I,H(S, R) = / sin(n(@ —¢))(1 + KRCOSQ)elRCSln9 do

-7

+ /ﬂ sin(n(@ — ¢))(1 + kRcos §) eREsn? g4g. (35)

m

Finally, we define

—1yr R
Mn (S) = (é [/ dRR [an (®(Pf,n - ®g,n) + b” (®§,n - ®Isv,n)] ’ (36)
giving
Folp, Ry + Xe, Ryl (k) = ™ ) / ds , e (37)
n=0 0

For an axially symmetric density we restrict to the n = 0 part of the sum, as in the previous
section.
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4.3. The general tube-density transform

We can now write the full Fourier transform as
00 AL
FIp. RY + Xe, Rl (K) = Fao + Fy = €% )~ f ds Oy + 1) €77 (38)
n=0 0

Where A, represents the contributions of a subset of the manifold for which there is no local
overlap (R < 1/«). It is defined using (23) in conjunction with (22). The function 7, is the
contribution of the complement of this subset (R > 1/« (s)). It is defined using equation (36)
in conjunction with equations (30), (32), (33), (34) and (35). We recover the axially symmetric
expression for both A and 7 by considering only the n = 0 contributions.

The evaluation of F,, is relatively simple, especially in the case in which (22) has anti-
derivative results, for which it reduces to an arclength integral. The evaluation of F,,, however,
will generally require a numerical integration over all three parameters.

4.4. The transform as an ordinary differential equation

In the case in which the tube’s maximum radius R;;, < 1/k, Vs, we only need to evaluate F,.
If further it can be represented as a single arclength integral (there exist anti-derivative results
for (22)), we can differentiate F' with respect to s to create a differential equation

n
F'lp, RY + Xe, Ryl (k) = ¥ 3 3, el Rrx), (39)
i=1
If the function set (u;, up, u3) are specified, we can use this equation to augment the Darboux
system (3) and generate F. That is, for a given Kk, the Fourier transform is obtained by a
numerical integration of a system of nonlinear differential equations for s from O to L.

4.5. The general surface transform

If we are interested in a particular tubular surface of radius Ry, then we can evaluate the
transform of the density on that particular surface as follows. Inserting (13) into (11) (and
taking into account an affine map as in (14)) we have

ik-x.

F[pvRy—l—XCa RS](k) = \/2—
T JO

L 2
ds elk<Rr/ dgp |J| elRAkfR(d] cos 0+d; sm(?)' (40)
0

4.6. Case 1: no local overlap

If Ry < 1/k(s), Vs, the surface has no local overlap. We use the Fourier series expansion
of p(s,Rs,0) (17) and make the substitutions (18). Following the same procedure as in
sections 4.1 and the appendix, we obtain the following result:

ik-Rr

L
dse
0

Flp Ry +xe RIG) =v2rR > Y1)
n=0

ikn . . ikn e
a,1<cos(n¢>) + el sm(n¢>)> + bn< — sin(n¢) + < cos(nqb)) if n is even
In(CRs) Kn Kn ’
a, <i sin(ng) + rel cos(n¢)> + b, (i cos(ng) — el sin(n¢)> if n is odd

(41)

14
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In the axially symmetric case this reduces to

L
Flpas, RY + Xc, Ri1(K) = V27 R, &> / ds pus Jo(CRy) e*7r. (42)
0

4.7. Case 2: local overlap

For Ry > 1/k(s), Vs we have

R elka S

Z( l)n / ds eik-Rr [ (OC n ®g,n) + b” (®IS’,n - ®I§I,n)] ’ (43)

where the ® functlons are defined by (30), (32), (33), (34) and (35). In the axially symmetric
case we have
Rs eik-xC

Flpas, Ry + x¢, Rg](k) = \/2—
T

L
/ dspas (O o — OF o) €™ Fr. (44)
0

5. Restricting the » contribution

We now consider radially unbounded manifolds. In what follows we derive conditions on
the radial rate of decay of p such that the contribution to (38) from 7n(s) is negligible. This
allows us to approximate the full Fourier transform with the much simpler F;, expression. In
particular we establish conditions for which the contribution of F, is O(e) compared to Fy,
with € a positive constant which can be made arbitrarily small.

To do this we compare the relative size of the R integrals on the domains R € [0, 1/k)
and R € [1/k, oo]. In order to make a direct comparison we must first compare the 6 integrals
on the two domains, since they can be viewed as functions of R. We can split the 6 integrals
on the domain R € [0, 1/k) into the same set of & domains as we did in (31). That is, we have

1/k

)Ln (S) = dRR [a" (®En + 6211) + b" (@1;” + ®IS\I")] ’ (45)
0

which can be compared to 7,(s). The only difference is that we do not have a factor (—1)
on the domains |6 > 6,, as kRcosf > —1, VO. The ©® functions require the evaluation of
integrals of the following form:

b b
/ dé cos(n(6 — ¢)) eRCsn? 4 KR/ d6 cos(8) cos(n(d — ¢)) eREsin? (46)

b ab
/ do sin(n(6 — ¢)) R 4 KR/ d6 cos(6) cos(n( — ¢)) eRCsin?, (47)

where [a, b] C [—m, ]. The individual integrals (not including the pre multiplier kR) are
bounded in magnitude by 27 as they are composed of trigonometric functions. So the upper
bound on the difference between the 6 part of A and 7 is determined by R (x being the same
for both). We can take advantage of this for a particular form f (s, R) of the radial dependence
of a, or b,, at an arclength §’, by requiring the following inequalities are satisfied:

Jov dRR f(s', R) . S ARR f(5',R)
J dRRf(s R) Jy/ dRR2 f(s', R)

If the inequalities (48) hold for all a,, and b,,, then the function n(s") is O(€) in comparison to
A(s") at s'. If further this holds for each s’ € [0, L], then we have that F, is O(¢) in comparison
to Fpo.

<e. (48)
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Figure 6. Representative plots of the integrand R> exp(—BR). (a) The integrands maximum is for
a value R > 1/« and the inequalities (48) cannot be satisfied. (b) The maximum is to the left of
1/« but the decay rate of the function would not be sufficient for (48) to be satisfied. (c) The rate
of decay is sufficient for (48) to be satisfied.

We can obtain bounds on the integrals of (48) by considering a function decaying
exponentially with R. In particular we consider the function exp(—pB(s)R), with B(s) > 0
controlling the rate of decay and A the maximum density value. We shall derive an inequality
relating B to the axis curvature . The integrals will be labelled IX and Ifz onR € [0, 1/«] and
%, Ifz onR € [1/k, 0o]. We have

B ™ drR AR — A TRe k1 L A [T qre-tR — qetre [< L 1
2—/ e =—=[Re ]l+—/ dRe PR = Ae —+ =
1 B < BJ1 BB
In order that (48) can hold the integrands R exp(—BR) and R? exp(—BR) will have a single
maximum on the domain R € [0, 1/k) (see figure 6). Also they will be zero at R = O.
Thus we can create a lower bound for the integrals on this domain using by approximating
them from below as a triangle, with one vertex at the origin and one at the coordinates
(k7' Ak Vexp(—B/K)) or (k~', Ak "2 exp(—B/K)). We have
AePlry2

) (L — 50
1~ 2 (50)

:| . (49)

The ratio I5/IF satisfies
B 27'p+1 2

= < < ,
IR B2 B!
remembering R, x > 0. In turn we require the rhs of (51) be less than or equal to €, from
which we obtain

619

p> . (52)
€

We now show this rate will also ensure the inequalities (48) are satisfied for the integrand
R? exp(—pBR). We have

= [ arac = - fae w4 2 [ etrar (53)
% 1/k
J— |:K2 N 2 |:/c1 N 1 i|:| Aefﬁ/“[ 242 4 2B 1] (54)
— _ —_ | — —_— = K K .
B BLB B B’

The integral on [0, 1/k] can be bounded from below using a triangular area
p AeTPle3

I _ 55
T > 5 (55)

16
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Thus we have
K 2282+ 2Bk +2) 2
ey < — < — -
If B3k3 Bic—!
Substituting 8 = 2« /e will yield the required inequality. So, if 8 > 2« /€, the inequalities
(48) hold. We can use this estimation as a basis for comparing other choices of f(s, R). If the
following inequalities hold:

(56)

o0 —2/e

, Ae )
f(s', R)RAR < —[2€¢ + €7, (57)
1/ 4k
e8] A —2/€
f(s',R)R*dR < —[4e + 4€? +2€7], (58)
1/ 8
1 —2/e¢, 2
/ f(s',R)RAR > —————, (59)
o 2
1 —2/€; =3
/ f(s',R)R*dR > — (60)
0

then (48) are satisfied at s = §’. The estimations are determined by the curvature of the tube’s
axis. As expected, the larger the curvature the faster the required rate of decay.

Given the inequalities (48) are satisfied for the whole manifold we have the approximation
F (k) ~ F,,(k), with the quality of the approximation determined by the value of €. In addition,
within the same approximation, we can extend the domain of integration of R for (27) to
R € [0, oo]. In this case the R integral is the Hankel transform, for which there are a number
of known analytic results, see for example [20].

6. Conclusions

We have constructed a model for a continuum tubular density. The density is defined by
specifying the geometry of the axis curve r, and a vector field d; which determines whether
the manifold has twisted structure. Points on the manifold are specified by the triple (s, R, 8),
with s arclength, R the tube radius and 6 the point on a circle of the tube surface for fixed s
and R values (section 2). A continuous scalar density function is then defined. This density
can represent a physical quantity such as an electron density or volume of magnetic flux.
A tempered mapping is used to represent the density distribution (section 3). When there is
density overlap, the net density is calculated using the superposition principle. In order to take
advantage of tubular forms constructed from an ensemble of repeated structures, such as those
encountered for protein tertiary and quaternary structures, we extend our density definition to
include an arbitrary affine transform (section 3.3).

By representing the density function p as a Fourier series we derive the most general
expression of the Fourier transform of this density (section 4.3). In doing so we handle
existence of density overlap by splitting the integral into two components. One for a subset
of the manifold whose radius is less than the critical curvature condition, R < «, on this
set the tube’s Jacobian is smooth. For the complement of this subset (R > k) we ensure the
Jacobian is positive definite by splitting the 6 integral. In doing so we ensure the net density
is always correctly evaluated. Particular cases of an axially symmetric density (section 4.3)
and a constant density (section 4.1.2) are detailed. In section 5 we define conditions on the
radial rate of decay of the density, such that the full transform can be approximated by only

17
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the contribution for which R < 1/«k. This greatly simplifies the evaluation of the transform.
In particular specific forms of the density function can be evaluated as a single arclength
integral. The required conditions are (48). A set of upper and lower bounds on the integrals
in the inequalities (48) were calculated based on an exponential decay rate. The estimates
are determined by the curvature of the axis «. Finally, we detail expressions for the Fourier
transform of a single tubular surface of the manifold in section 4.5.

Appendix. Evaluation of the 6 integrals for F,,

In this section we demonstrate that each 6 integral (19) and (20) can be written in terms of a
Bessel function.
As the integrands (19) and (20) are periodic in & we can change the range of integration
to 0 € [—m, m]. Thus, we must evaluate the following integrals:
T
Ocro = (ancos(ng) — bysin(ng)) | cos(nd) R dg, (A.1)

-7

Oce = kR(a, cos(ng) — by sin(ng)) ! cos(nf) cos(0) R dp  (A.2)

-7

b

Og0 = (ay sin(ng) + b, cos(ng)) | sin(nd) ¥ dg, (A.3)

-7

Ose = kR(a, cos(ng) + b, sin(ng)) | sin(nd) cos(0) 5" dg,  (A.4)

-7
We first deal with ® ¢/s)0 contribution. We use the complex exponential form of cos and sin
to write the integrals as

1 b4 ) ) b4 ) )
E |:/ do e—l(—n@—RCsmO) +/ do e—l(n@—RCsmﬁ)i| , (AS)
-7 -7
1 4 . . 4 . .
E [/ do e—l(—n@—RCsm@) _ / do e—l(n@—RCsmG)] . (A6)
1 - -

We recognize these functions as being, up to a constant multiplier, the integral definition of
Bessel’s functions (J,,) of the first kind

1 [~ ) .
J(2) = o f dr e 1T —zsinT) (A7)

where 7 is the order of the function and z is either real or complex (here RC is always real).
Thus we can write equations (A.1) and (A.2) as

O = (ay c0s(ngp) — by sin(n))7[J_y (RC) + J, (RC)1,
Og0 = —(an sin(ng) + by cos(ng))milJ_,(RC) — J,(RC)].
Applying the Bessel function identity J_,(z) = (—1)"J,(z) we have

Oce = (ay cos(np) — by sin(nh)) {3”"” (RQ) niseven, (AS)
. 0 if n is even
Og,0 = (a, sin(ng) + b, cos(neg)) 27il (RC) if nisodd ° (A.9)

18
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Now we consider O ¢;s). We use standard trigonometric identities to write these integrals as

Oce = % [cos((n + 1)8) 4 cos((n — 1)8)] eREsn? dg, (A.10)
O, = % [sin((n + 1)0) + sin((n — 1)6)] eREsn? 4g. (A.11)

Inserting the complex exponential forms as in equations (A.5) and (A.6), and using the Bessel
integral identity (A.7) this becomes

wkR
Oc, = T{[J_(n+1)(RC) + Jut 1 (RO)] + [J-(n—1) (RC) + J,—1 (RO)]}, (A.12)
—iTkR
Os, = {[V- 11y (RC) = Jy1 1 (RO)] + [ (1) (RC) — J,, -1 (RO}, (A.13)
which becomes
0 if n is even
Ocr = {mcR[Jn+1 (RC) + J,-1(RO)]  ifnisodd (A-19
_ |inkR[J 41 (RC) + J,_1 (RC)]  if nis even,
Osc = {0 if nis odd (A-15)
Finally, we apply the following Bessel identity:
20
—J (2) = Ja+1(2) + Ju—1(2),
to obtain
0 if n is even
Occ = (a, cos(ng) — b, sin(ng)) { 2 , (A.16)
o 9) = busin(ng))  2nic (RC) ifnis odd
2nimcj (RC) ifni
Os = (a, sin(n) + by cos(np)) 1 € " HAISEVEn A1)
0 if nis odd
The total transform can be written as
1k X N ) 1/k
Fro = J_ Z( 1" f dse®Rr fo dRR (O¢, + B¢ + Og, + Ogp0). (A.18)

Inserting (A.8),(A.9), (A.16) and (A.17) into (A.18) gives (21).
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