
CISM Lecture Notes

A. Erlich, Th. Lessinnes, D. E. Moulton, and A. Goriely
Mathematical Institute, University of Oxford, UK

1





1

A short introduction to
morphoelasticity: the mechanics of
growing elastic tissues.

Growth is a key process in the life and development of all biological organisms and
depends on a number of genetic, biochemical, environmental, and mechanical factors.
In particular, growth can be affected by mechanical stresses and, in turn, generate
new stresses to modify shape, create patterns, and tune the overall response of the
tissue. From a mathematical perspective, the modelling of growth processes and in
particular its interplay with mechanics is particularly challenging since, unlike tradi-
tional mechanical systems, the reference state where key physical quantities need to be
evaluated evolve with time. An extra difficulty comes from the fact that the geometry
of the object also evolves in time due to the addition of mass. From a modelling per-
spective, it is particularly important to isolate these effects as they are generated by
different processes. In this short introduction, we first give a general overview of the
problem of biological growth. Second, the mathematical problem of growth modelling
for biological system is considered and illustrated on a number of examples starting
with simple one-dimensional systems. Third, we present the general framework of non-
linear morphoelasticity to describe the mechanical response of growing elastic tissues
and the remodelling of material properties.

1.1 Introduction

Growth is the process by which a body increases in size through the addition of mass.
In biological systems, growth can serve a number of different purposes, and occurs in
many different forms. Growth may be restricted to particular locations on the body. In
particular, tip growth is often found in microscopic filamentary systems (Gooday and
Trinci, 1980; Howard and Valent, 1996; Goriely and Tabor, 2003). Surface growth and
accretion refers to the deposition of material on the surface of a body - this type of
growth is found in the formation of horns, teeth, and seashells (Skalak and Hoger, 1997;
Thompson, 1992). In volumetric growth, on the other hand, growth occurs throughout
the bulk of the body. This is common in the growth of hearts, tumors, and arteries
(Taber and Humphrey, 2001; Cowin, 2004).

Continuum mechanics and nonlinear elasticity provide a natural framework to
study growth. Of foremost importance is capturing the correct relationship between
growth and elasticity. The basic idea is that in a growth process, the deformation of a
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Fig. 1.1 One-dimensional deformation of a rod.

body can be due to both a change of mass, and an elastic response. This concept, first
put on mathematical terms by Rodriguez et al. (Rodriguez, Hoger and McCulloch,
1994), states that the deformation tensor can be decomposed into a growth tensor
instructing different parts of the body how to add mass locally and an elastic tensor
which captures the elastic reorganization necessary to ensure integrity of the body.

A key benefit to studying growth through continuum mechanics is that it provides
direct access to stresses. The relationship between stress and growth is a key concept in
the theory of elastic growth. Stress may induce growth, for instance a body may grow
until a homeostatic “target” stress is reached. On the other hand, growth can induce
residual stress, in particular when the body is inhomogeneous or growing differentially.
Residual stresses are stresses that persist in the body even after all body forces have
been removed. They are known to play an important role in the functioning of a
body. For instance, residual stress is key in the regulation of the transmural stress
in arteries (Humphrey, 2003), and is also known to occur in tree and plant tissues
(Vandiver and Goriely, 2008), leading to tension or compression woods. A particularly
spectacular example of these internal stresses is found in the “Wapas” trees in French
Guiana. Due to residual stress, these trees explode when cut, giving them the nickname
“killing trees” (Détienne and Thiel, 1988). More generally, the generation of residual
stress is connected to the question of how growth can alter the properties of a material
(Goriely and Ben Amar, 2005; Ben Amar and Goriely, 2005).

This chapter is structured as follows. We begin with a 1D theory of growth, pro-
viding several examples to illustrate the basic concepts and some of the questions that
arise in morphoelasticity. Then, we develop the full 3D theory from first principles.
The fundamental concept, the decomposition of the deformation tensor, is derived in
a manner different from any appearing in the literature. We conclude with several
applications and future challenges.

1.2 1D growth

In this section we develop the theory of elastic growth in one dimension. Consider a
rod of length L0 in its initial reference configuration which undergoes a deformation
so that it is of length l in the current configuration. Let S0 describe position along the
rod in the initial configuration and s position in the current configuration - see Figure
1.1. We define the geometric stretch

λ =
∂s

∂S0
. (1.1)
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In general λ = λ(S0), and λ is constant for a uniform stretch. Also, λ > 1 corresponds
to elongation and λ < 1 to a reduction. We next consider several classes of deformation.

1.2.1 Pure elastic deformation

In a pure elastic deformation, λ = α, where α = ∂s
∂S is the elastic stretch. Letting σ

denote the stress, the characteristics of the deformation are determined by a constitu-
tive relationship between σ and α. For example, “Hooke’s Law” for a linear material
gives σ = E(α − 1), where E is the Young’s modulus. Solving for α and inserting in
(1.1), the deformation is described by

s =
( σ
E

+ 1
)
S0, (1.2)

from which we can write l =
(
σ
E + 1

)
L0. In this case, the length increases linearly

with the stress. A more accurate description is given by the non-linear neo-Hookean
relationship σ = µ(α2−α−1), where µ > 0 is the elastic modulus. This relationship is
derived in the contribution by Ogden and Saccomandi in this volume.

1.2.2 Pure growth

A pure growth is characterized as having no elastic response. Here, λ = γ, where
γ = ∂S

∂S0
describes the growth. Whereas in the previous section α describes a pure

elastic stretch, γ describes the addition or removal of material. If γ > 1 there is
growth while γ < 1 indicates shrinking or resorption of material. In general, the
material may undergo growth or resorption at different times and at different rates,
and a constitutive relation is needed. For pure growth, the constitutive law is of the
form

∂γ

∂t
= G(γ, s, S0). (1.3)

In the simple case of uniform growth, G = 1, which gives γ = t and s = S0t. Exponen-
tial growth is captured by G = kγ. Then s = S0e

kt and the length of the rod grows as
l(t) = L0e

kt. Alternatively, suppose that growth only occurs towards the tip. For an
exponentially growing tip, we take

∂γ

∂t
= G(γ, s) =

{
kγ 0 < s < a

0 a < s < l
(1.4)

Equation (1.4) is coupled with ∂s
∂S0

= γ and initial conditions s(0) = S0 and γ(0) = 1.
The difficulty computationally is that s = s(S0, t) is a moving interface. To understand
the behavior of the growing tip, consider a discrete numeric process. At time ti, the
rod will grow according to γi = ekti . How much does the rod grow in one time step,
from ti to ti+1? Letting sn be the current configuration at the nth step, we have

ekti = γi =
∂si+1

∂S0
=
∂si+1

∂si

∂si
∂S0

=
∂si+1

∂si
ekti−1 . (1.5)

This implies that ∂si+1

∂si
= ek(ti−ti−1) = ek∆t. Thus the region 0 < si < a grows

by a factor ek∆t, meaning that the rod extends by an amount ∆l = a(ek∆t − 1).
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Fig. 1.2 Setup for the tumor growth toy model.

The important thing to note is that this is independent of the actual time, i.e. the
rod extends by the same amount at every time step. Even though the tip is growing
exponentially, the length of the rod is only increasing linearly.

1.2.3 Example: tumour growth

As another example, we present a toy model for tumor growth (see more models of this
type in the contribution Mechanical Aspects of Tumour Growth by L. Preziosi in this
volume). Our aim is to write a model of tumour growth for a three dimensional tumour
considered as a growing spheroid. The setup is depicted in Figure 1.2. The tumor is
surrounded by a bath of nutrient, which is transmitted to the tumor through diffusion
with uptake. We first write a one dimensional model. And consider the problem of
the growth of a line due to nutrient intake. The centre of tumour is represented by
the side of the line at S0 = 0. Nutrient diffuses in from the tip at S0 = L0. We first
assume that the tumour is allowed to growth without being compressed by surrounding
healthy tissues. The line concentration of nutrient is labelled u(s, t). The concentration
of nutrient in healthy tissues is labelled u0. Its initial reference length is parameterised
by S0. Any region of the tumour (and in particular the one which is between 0 and S)
grows proportionally to its nutrient intake:

∂tS(S0, t) = κ

∫ s(S0,t)

0

u(x, t)dx, (1.6)

where S parameterised the reference arc-length of the tumour and s its current arc
length. Taking one partial derivative of (1.6) by S0 leads to the local law:

∂tγ = κα γ u. (1.7)

The nutrient dynamics is assumed to follow Fick’s law of diffusion with a sink term
Q accounting for the nutrient consumed by the tumour:

ut = Duss −Q. (1.8)

We distinguish Phase 1 during which the nutrient permeates the whole of the
tumour body from Phase 2 during which the tumour has grown so large that the
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nutrient no longer reaches its core. As a result, a necrotic core forms and only the
periphery of the tumour receives nutrient. In an actual tumour, a third phase should
be considered where the tumour develop vascularisation but that is beyond the scope
of our one dimensional model.

In Phase 1, the boundary conditions are u(l) = u0, and ux(0) = 0 accounting for
the fact that there is no flux of nutrient through the core of the tumour. Assuming
that the characteristic time scale for diffusion is much shorter than that of growth, we
solve (1.8) independently of (1.7) and find

u(s, t) =


u0 if s > l,

ul
a2

(
s2 + a2 − l2

)
if s ≤ l,

(1.9)

where l is the position of the forefront of the tumour and a =
√

2Du0

Q is the permeation

length of the nutrient.
Substituting (1.9) in (1.6) leads to

∂tS =
κu0

a2

∫ S

0

(
x2 + a2 − l2

)
dx

=
κu0

a2

(
S3

3
+ (a2 − l2)S

)
(1.10)

Specialising (1.10) to the tumour forefront (S = l) gives

∂tl = κu0l

(
1− 2

3

l2

a2

)
. (1.11)

Eq. (1.11) indicates an exponential growth in Phase 1.
When l > a, the nutrient does not diffuse to the inner most part of the tumour and

a necrotic core forms. That is the onset of Phase 2. At this point, a new concentration
profile occurs defined by the boundary conditions u(l) = u0 and u(l − a) = 0. The
concentration profile becomes

u =


u0 if x > l,

u0

a2

(
x− (l − a)

)2

if l − a ≤ x < l,

0 if x < l − a,

(1.12)

where l and a are defined as before and where once again u(x) is C1 by construction.
Also note that the profiles (1.9) and (1.12) are identical when l = a.

Substituting (1.12) in (1.6) and specialising to the tumour forefront (S = l) leads
to

∂tl =
κu0

a2

∫ l

l−a

(
x− (l − a)

)2

dx

=
κu0a

3
, (1.13)
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which is explicitly solved by

l(t) = a+
κu0a

3
(t− tcr), (1.14)

where tcr is the time at which the exponential growth satisfying (1.11) reaches l = a
whence subsequent growth obeys the linear law (1.14).

Although the simple model (1.7,1.8) correctly predicts the apparition of a necrotic
core it can easily be improve. In the next paragraph, we show how to modify (1.7,1.8)
to take into account the three-dimensional shape of the tumour. In the next section,
we will show how the effect of stresses acting on the tumour can also be accounted for.

Referring back to the squelch 1.2 of the setup, let r(R0, t) give the radial position for
a solid sphere in the current configuration, where R0 is the radial position in the initial
configuration, and let b(t) be the radius in the current configuration. We suppose that
growth is exponential but proportional to the concentration of the nutrient. Hence,
growth is modelled by

∂γ

∂t
= kγu(r)

∂r

∂R0
= γ.

(1.15)

The three dimensional Fick’s law reads in spherical coordinates

∂u

∂t
=
D

r2

∂

∂r

(
r2 ∂u

∂r

)
−Q, (1.16)

where D is the diffusion coefficient and Q is the nutrient uptake (assumed to be
constant). The outer boundary condition for u(r, t) is u(b, t) = Ub, that is the bath
provides a constant nutrient supply to the outer surface. The other boundary condition,
and the growth behavior, depends on the size of the tumor. If b is small enough so
that u(r) can diffuse all the way to the center of the sphere, the boundary condition
is 0 ≤ u(0) < ∞. For some bcr, the diffusion will satisfy u(0) = 0. For b > bcr, the
boundary condition is u(b − a) = 0, where a > 0 is the penetration length of the
nutrient. This is shown schematically in Figure 1.3.

For b < bc, i.e. when the tumor is “small”, the entire sphere grows and so growth is
exponential. After this initial phase, growth is restricted to a spherical shell and so is
equivalent to the tip growth problem discussed above. Thus, as a function of time, the
size of the tumor b(t) increases exponentially at first and then transitions to a linear
rate.

1.2.4 Growth with elastic response

In an elastic body, growth is subject to an elastic response. The fundamental assump-
tion of morphoelasticity, to be justified later, is that the geometric stretch λ = ∂s

∂S0
is

the product of an elastic term α and a growth term γ. That is,

λ = αγ, (1.17)

where α satisfies some constitutive relationship with the stress, H(α, σ) = 0, and γ
satisfies a growth equation ∂tγ = G(α, γ, σ).
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Fig. 1.3 The concentration of the nutrient u(r) as a function of r for different sized tumors.

In (i), the tumor radius b1 is small enough for the nutrient to diffuse all the way to the center,

and growth is exponential. In (ii), the radius is a critical value bcr such that u(0) = 0. In (iii),

b > bcr – here growth only occurs in the region where u(r) > 0 and so the growth is linear.

To give an example, consider a rod growing between two walls. We take the growth
to be linear and uniform, so that γ = 1 + t, and use the linear Hookean model for the
elastic relationship: σ = E(α − 1). Due to the wall constraint, we must have λ = 1.
This implies α = 1/γ, from which we obtain

σ = −E
(

t

1 + t

)
. (1.18)

Essentially, as the rod grows, a compressive stress builds up to contain the rod in
the fixed space. Observe from (1.18) that as t → ∞, σ → −E. This is problematic
in that it states that only a finite stress is developed in compressing an infinite rod.
The problem is due to the linearity assumption. If instead the non-linear neo-Hookean
relationship σ = µ

(
α2 + α−1

)
is used, we obtain

σ = µ

(
1

1 + t2
− t+ 1

)
. (1.19)

For the non-linear model, there is nothing that slows down the growth and σ → −∞
as t→∞.

To better understand the relationship between growth and elasticity, it is useful to
consider a two-step process, pictured in Figure 1.4. Starting from the initial, stress-free
configuration, in Step 1 the rod grows to a configuration which is stress free but not
compatible because it does not fit within the walls. Hence this configuration is called
a virtual configuration. Step 2 is the elastic response, which may be thought of as the
problem of fitting the rod back in between the walls. This step introduces stress, and
maps the rod from the virtual configuration to the current configuration.

In many situations, the growth of a body depends on the stress level within the
body. For instance, the body may function best at a particular stress, and grow until
this target stress is reached. This situation can be modelled by
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Fig. 1.4 Decomposition of the deformation into a growth step which leads to an incom-

patible, virtual configuration, and an elastic response step, which fits the rod back into a

physically compatible state and introduces stress.

∂γ

∂t
= kγ(σ − σ∗) (1.20)

where σ∗ is the target stress or homeostatic stress. Consider the rod between two walls
geometry and a neo-Hookean material with σ = µ

(
α2 − α−1

)
. As before, γ = 1/α,

and (1.20) may be recast in terms of α as

∂α

∂t
= ασ∗ − µ(α3 − 1). (1.21)

Setting the right hand side to zero, define α∗ as the solution to ασ∗ = µ(α3 − 1), the
equilibrium elastic stretch.

Assuming that the initial configuration is stress free, α(0) = 1. If σ∗ > 0, α∗ > 1
and so α will increase, limiting to α∗ as t → ∞. This corresponds to γ decreasing
from 1 to γ∗ = 1/α∗. In this case, the target stress is tensile, and the rod contracts
until the target stress is reached. On the other hand, if σ∗ < 0, the target stress is
compressive. Here, α∗ < 1, and so α decreases to α∗; that is, the rod grows until the
proper compression is reached.

1.2.5 Application to tumour growth

As an example, we revisit the one-dimensional model of tumour growth proposed in
Sec. 1.2.3. In a one dimensional model, let us assume that the centre of the tumour is
at s = 0, in Phase 2 a necrotic core extends until s = l−a followed by active tumorous
tissues covering the interval s ∈ [l − a, l]. These two layers compress healthy tissue
trapped between the tumour and the ribcage modelled as a fixed wall at distance
d > l from the centre of the tumour. The setup is similar in Phase 1 but there are
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now only two layers since the necrotic core has not formed yet. We allow for necrotic,
tumorous and healthy tissues to have different mechanical properties. In 1D and in the
absence of distributed load, the stress σ is constant along the length of the structure.
We modify the growth law (1.7) of the active layer to account for the effect of stress
on growth:

∂tγ = κα γ u
(

1− σ

σ?

)
H
(

1− σ

σ?

)
, (1.22)

where H is the Heaviside function and σ? is a critical homeostatic level of stress beyond
which growth stops.

The only constitutive assumption we need to make is that σ is a monotonous
function of α. Because necrotic, tumorous and healthy tissues might have different
constitutive laws, we therefore consider three functions (inverse of the three constitu-
tive laws): αn(σ) (in the necrotic tissue), αt(σ) (in the tumorous tissue) and αh(σ) (in
the healthy tissue).

We restate the problem in dimensionless variables according to

t =
t?

κu0
; ` = a`?; L0 = L?0a; L = aL?;

l = al?; σ = n |σ?|; u = u0 u
? (1.23)

and drop the ?s.
For instance (1.22) formally simplifies to

∂tγ = αγ u (1 + n)H (1 + n) . (1.24)

In Phase 1, the non dimensionnalised version of (1.9) is

u =

{
1 if x > l,

x2 + 1− l2 if x ≤ l,
(1.25)

Note that because the stretches αt in the tumour and αh in the healthy tissue are
themselves independent of S,

d =

∫ L

0

αtdS +

∫ d−L0

0

αhdS =

∫ L

0

αtdS +

∫ Lh

0

αhdS = Lαt(n) + Lh αh(n), (1.26)

which gives an implicit equation for n in function of L.
We also have

∂tL = ∂t

∫ L0

0

γdS0,

= H(1 + n) (1 + n)

∫ L0

0

αγudS0,

= H(1 + n) (1 + n)

∫ l

0

uds,

= H(1 + n) (1 + n)

∫ αtL

0

s2 + 1− (αtL)2ds,

= H(1 + n) (1 + n)αtL

(
1− 2

3
α2
t L

2

)
. (1.27)
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Eqs. (1.26, 1.27) together with the constitutive laws for both healthy and tumorous
tissues form a closed system.

In Phase 2 the non-dimensional nutrient profile is

u =


1 if x > l,(

x+ 1− l
)2

if l − 1 ≤ x < l,

0 if x < l − 1,

(1.28)

so

∂t(Ln + L) = H(1 + n) (1 + n)

∫ l

0

uds,

= H(1 + n) (1 + n)

∫ αn Ln+1

αn Ln

(s− αnLn)2ds,

= H(1 + n)
1 + n

3
. (1.29)

Eq. (1.26) becomes
d = Lnαn + 1 + αhLh, (1.30)

since the tumorous tissue extends over a current length of

αtLt = 1. (1.31)

Eqs. (1.29-1.31) together with the constitutive laws of each subregions constitute a
closed system of equations. The initial value for the differential equation (1.29) is
Ln(0) = 0. A numerical solution of this system of equation is reported in Fig. 1.5.

For large times, the stress asymptotically reaches the (dimensional) value σ?. Ac-
cordingly, the healthy tissue is asymptotically stretched to αh(σ?) and the forefront
forefront of the tumour reaches

l
t→∞→ d− αh(σ?)Lh. (1.32)

As a conclusion, before vascularisation, the size of the tumour is dictated by the
available space d, the constitutive law of the healthy tissue and the homeostatic stress.

1.3 3D growth

To appropriately model the 3D growth of soft biological tissues aspects of growth and
elasticity should be incorporated into a theoretical framework. In their seminal paper,
(Rodriguez, Hoger and McCulloch, 1994) proposed a multiplicative decomposition of
the deformation gradient into contributions for growth and elasticity.

Their work was based on similar ideas from plasticity: The Kröner-Lee decom-
position ((Kröner, 1960; Lee, 1969)) splits the deformation gradient into an elastic
and a plastic part. In this chapter, we formally introduce the theory of morphoelas-
ticity, which is an evolution of Rodriguez’ deformation gradient decomposition. This
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Fig. 1.5 Stress n[|σ?|] (left) and position of the forefront l[a] (right) in function of time. For

a tumour growing towards an homeostatic stress σ? < 0 when all three tissues are assumed

to be Neo-Hookean: σ = µi/3(α2
i − 1/αi) where i takes value in {n, t, h} and we assumed as

an example that µn = µh = µt = −σ?.

introduction, much like a text on traditional nonlinear solid mechanics, will include a
part on kinematics (geometric deformation, i.e. the study of strains, see section 1.3.1),
balance laws (balance of forces and other physical quantities, see section 1.3.2) and
constitutive relationships (which relate strains to stresses, see section 1.3.3).

A challenging aspect of morphoelasticity is that (as opposed to traditional non-
linear solid mechanics) morphoelastic systems can be open to fluxes of mass, energy,
momentum, entropy. These quantities must be accounted for carefully. This will be
the subject of section 1.3.2. It will result in a continuum formulation of the second law
of thermodynamics known as the Clausius-Duhem inequality. This formalism will be
picked up in section 1.3.5 where we will desire derive a statement about growth laws
based on this inequality.

1.3.1 Kinematics

In traditional continuum mechanics it is common to consider the body in two different
configurations, the initial reference configuration and the current configuration. The
initial reference configuration describes the body in its initial state at t = 0 (i.e. before
deformation) and it is required to be stress-free. The current configuration describes
the deformed body at time t. Mathematically, they are subsets of Euclidean space,
denoted B0 ∈ E3 and Bt ∈ E3, respectively. Material points in B0 are described by the
the vector X which are mapped to x in Bt. This deformation map is is

ϕ : B0 → Bt X 7→ x = ϕ (X, t) (1.33)

for which we assume the inverse ϕ−1 to exist. Strain, the geometric deformation of a
body Bt with respect to its reference state in B0, is quantified through the deformation
gradient F. The latter is defined as the gradient of the deformation map with respect
to initial reference coordinates

F (X, t) = ∇Xϕ (X, t) =
∂x

∂X
(X, t) (1.34)
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B0

Br

F = AG

Ω0

X

J = JAJG

Ωt

x

Bt

G JG AJA

initial
reference

configuration
current

configuration

virtual
reference

configuration

Fig. 1.6 Deformation gradient decomposition. The fact that the virtual reference configura-

tion Br does not fit into Euclidean space is highlighted.

As mentioned in the introduction, in morphoelasticity we decompose the defor-
mation gradient into a growth deformation gradient G and an elastic deformation
gradient A:

F (X, t) = AG (1.35)

This requires the introduction of the virtual reference configuration Br ∈ E3.
Note that we define the determinants of the deformation gradients as J := det F,

JA := det A and JG := det G and of course we have J = JAJG. If the deformation is
incompressible (i.e. locally volume preserving), JA = 1.

Formally1, G maps vectors from B0 to Br and A maps from Br to Bt and their
composition F = AG maps vectors from B0 to Bt. On a physical level, the decompo-
sition can be interpreted as follows. Growth (geometrically speaking) is a map from a
stress-free configuration B0 to another stress-free configuration Bt, but the latter will
in general not fit into Euclidean space as the grown material will overlap or (if locally

1In the main text, we follow a standard introduction of kinematics in morphoelasticity in which
B0, Br and Bt are Euclidean, which leads to restrictions like the lack of a bijective map between B0
and Br.

From a differential geometric perspective, B0, Br and Bt are differentiable manifolds and F, A
and G are maps from tangent bundles to tangent bundles of the respective manifolds. From this
perspective, Br is perfectly compatible at the expense of being non-Euclidean. We will not go further
into differential geometric aspects here. Detailed treatments can be found in (Marsden and Hughes,
1994) and (Yavari, 2010).



3D growth 13

det G < 1, i.e. resorption) have holes. That is, G can break the continuity of the tissue.
The purpose of the elastic deformation is to restore continuity of the tissue, filling the
holes at the expense of introducing tensile stress, and moving apart the overlapping
regions at the expense of introducing compressive stress. For this reason, the current
configuration Bt is no longer stress free, even when it is unloaded. Stress that remains
even in the absence of loads is called residual stress.

The configuration Br is not physically realised in a growing biological tissue, and
for this reason we refer to it as the virtual reference configuration. Because of overlaps
of tissue, a bijective deformation map of the kind (1.33) cannot be defined between B0

and Br (i.e. it is impossible to keep track of material points if Br is Euclidean) and G
cannot be defined as a gradient of a deformation map in the fashion of (1.34) – things
are somewhat different if Br is assumed non-Euclidean, see footnote 1 for literature
on geometric growth theories.late

1.3.2 Balance laws

In this section we state the balance laws for mass, linear momentum, angular momen-
tum, energy and the entropy imbalance. The energy balance and the entropy imbalance
are continuum formulations of the first and second law of thermodynamics, which will
lead to the Clausius-Duhem formulation of the second law. This section should not
only serve as a thorough study of morphoelasticity and the openness (with respect to
mass, momentum, energy and entropy flow) of the systems it is intended for, but will
also pave the way for section 1.3.5 of the present work. In this chapter, we will use the
framework of rational thermodynamics, in particular the Coleman-Noll procedure, to
draw conclusions about growth laws based on the Clausius-Duhem inequality stated
in section 1.3.2.

Generalising the conservation equations of traditional continuum mechanics to mor-
phoelasticity and open systems requires careful balance and the correct interpretation
of source terms. These equations have been studied by several authors and we will
keep our notation relatively close to (Epstein, 2012).

Note that the overdot denotes derivatives with respect to the time variable. For
some quantity a, we denote the time derivative ȧ = da/dt. Also note that spatial
differentiation (divergence, gradient) is always implied with respect to the current
variable x ∈ Bt (unless stated otherwise, like in 1.34).

Slow growth assumptions of morphoelasticity. Having stated the kinematic assump-
tions of morphoelasticity in the previous section, we now introduce some mechanical
assumptions.

1. Separation of timescales: The timescale of growth is much slower than that of
elasticity.

2. Mass is added from the initial reference configuration B0 to the virtual reference
configuration Br and is constant throughout the elastic deformation (which maps
from Br to Bt).

3. Mass is added through a volumetric source (i.e. no mass boundary flux).



14 A short introduction to morphoelasticity: the mechanics of growing elastic tissues.

The first assumption is fairly is justified because the timescale of biological growth
is typically hours, days or years, whereas the timescale of elasticity relates to wave
propagation in elastic materials which is no larger than seconds.

We will now briefly explore a consequence of the second assumption and explore
the third assumption when stating the mass balance.

We assume that mass is added in the growth process from B0 to Br, but no mass is
added during the elastic deformation from Br to Bt. Let us investigate the consequences
of this assumption.

Let us say dMr = ρrdVr is a mass element in the virtual reference configuration
Br, where ρr is the virtual reference mass density and dVr is a virtual reference volume
element. Similarly, let dMt = ρdVt where ρ is the current density. Earlier, we intro-
duced F = AG and J = det F, JA = det A and JG = det G. Since no mass is added
from Br to Bt, dMt = dMr, and with appropriate coordinate transform dVt = JAdVr
we obtain

JA ρ = ρr (1.36)

We now make the additional assumption that ρr is constant in time. This implies
that the new, grown mass has the same density (locally) as the surrounding pregrown
tissue. This assumption allows a simple coupling between the mechanics and geometry
of growth, as we will see in the statement of mass balance.

Mass balance. We think of a growing tissue as a collection of cells which take nutrients
from the extracellular fluid. In our continuum modeling approach, the tissue has a
density (mass per volume) ρ (x, t) in Bt. Nutrient uptake contributes a volumetric
growth rate function ρ (x, t) γ (x, t) in Bt. Physical laws are most naturally stated in
the current configuration. We will present the mass balance for a volume Ωt ⊂ Bt. The
mass balance takes the form

d

dt

∫
Ωt

ρdVt =

∫
Ωt

ργdVt (1.37)

We now transform this balance equation which is integrated over Ωt into a local,
pointwise statement at x, t. Since Ωt is a region which evolves with time, it will prove
useful to transform to the corresponding region Ω0 ⊂ B0 and evaluate time derivatives
in this static region. Volume elements and area elements transform as∫

Ωt

dVt =

∫
Ω0

JdV0 (1.38)

Evaluating time derivatives in B0 and taking into account that JA ρ is constant in time
leads us to the local, pointwise statement

γ = tr
(
ĠG−1

)
(1.39)

The assumption that ρr is constant allows for a simple coupling between the mechanics
and the geometry of growth: The last equation relates the change in mass of a body
to properties of the geometric deformation gradient.
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Compatible and incompatible sources. In the following, we will present the integral
statements over Ωt for the remaining laws (energy, linear and angular momentum,
entropy) and then the localised (pointwise) statements of the same laws.

As we have discussed regarding the slow growth assumption, new mass (with the
same density as the surrounding material) enters the tissue with the local growth rate
ργ. This material will come with its own momentum, energy and entropy which may
or may not diverge from the surrounding tissue. One possibility is that indeed the new
material has the same properties as (locally) the surrounding tissue. We call these type
of sources compliant, using the terminology of (Epstein, 2012), and they balance out
and do not appear in the local statements of the laws. Alternatively, the new material
may sources that are different from the pregrown material, having for instance locally
a higher energy density than the surrounding tissue, or due to microscopic organisation
possibly a lower entropy. We call these sources non-compliant, and they do appear in
the local statements. We denote non-compliant sources with an overbar.

Linear momentum balance. This is the balance between change in linear momentum
and the forces that cause it. We introduce the volumetric body force density (force
per volume) b, the surface traction (force per area) t which according to Cauchy’s
postulate can be decomposed into the Cauchy stress T times the surface normal n,
i.e. t = Tn. The non-compliant momentum source (force per volume) is p:

d

dt

∫
Ωt

ρvdVt =

∫
Ωt

bdVt +

∫
∂Ωt

TndAt︸ ︷︷ ︸
body and traction forces

+

∫
Ωt

γρvdVt︸ ︷︷ ︸
compliant

+

∫
Ωt

p̄dVt︸ ︷︷ ︸
non-compliant

(1.40)

The local (pointwise) statement is

ρv̇ = b +∇ ·T + p̄ (1.41)

Angular momentum balance. This is the balance between change in angular momen-
tum and the moments (sometimes also called torques) that balance it. Without loss of
generality, we state moments with respect to the coordinate system origin. Since the
non-compliant linear momentum source p enters the angular momentum balance, we
require no additional non-compliant angular momentum source (it could be include
into p).

d

dt

∫
Ωt

ρx×vdVt =

∫
Ωt

x× bdVt +

∫
∂Ωt

x×TndAt︸ ︷︷ ︸
moments through body and traction forces

+

∫
Ωt

γρx× vdVt︸ ︷︷ ︸
compliant

+

∫
Ωt

x× pdVt︸ ︷︷ ︸
non-compliant

(1.42)
From localising the angular momentum balance, we can derive symmetry of the Cauchy
stress tensor T = TT .

Energy balance (first law of thermodynamics). This is the balance between the
change in the total energy of the body and contributions from mechanical power
and heat. The total energy is made up of internal energy E (i.e. elastic and chemical
energy) and kinetic energy K. The mechanical power P is the work per time which the
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body is exposed to through body force forces b and surface traction t, introduced in
the context of linear momentum balance. The heating Q is composed of a volumetric
heat source r (for radiation) and a surface flux q called the Fourier heat flux. Apart
from p, the non-compliant energy source ε enters the balance equation:

d

dt

∫
Ωt

ρ

(
ε+

1

2
|v|2

)
dVt︸ ︷︷ ︸

˙E(Ωt)+K(Ωt)

=

∫
Ωt

b · vdVt +

∫
∂Ωt

n ·TvdAt︸ ︷︷ ︸
P(Ωt)

+

∫
Ωt

ρr dVt +

∫
∂Ωt

q · ndAt︸ ︷︷ ︸
Q(Ωt)

+

∫
Ωt

γρ

(
ε+

1

2
|v|2

)
dVt︸ ︷︷ ︸

compliant

+

∫
Ωt

ε+ p · vdVt︸ ︷︷ ︸
non-compliant

(1.43)

The local (pointwise) statement is

ρε̇ = T : ḞF−1 + ρr −∇ · q + ε̄ (1.44)

Note that to successfully derive this local form, the term b · v should be replaced
through the linear momentum balance according to (1.41), which is why p does not
appear in the local statement.

Entropy / free energy imbalances (second law of thermodynamics). We will only be
concerned with stating the entropy imbalance here. In section 1.3.5, we will discuss
it from the perspective of rational thermodynamics, which we will apply to obtain
restrictions to constitutive relationships.

According to the entropy imbalance, the change in entropy density η is greater
than the heat supply (as defined in the energy balance) divided by the temperature
density θ. The non-compliant energy source ε and the entropy source η also enter the
imbalance.

d

dt

∫
Ωt

ρηdVt ≥
∫

Ωt

ρr

θ
dVt −

∫
∂Ωt

q · n
θ

dAt︸ ︷︷ ︸
Q(Ωt)/Θ(Ωt)

+

∫
Ωt

γρηdVt︸ ︷︷ ︸
compliant

+

∫
Ωt

ε̄− η̄
θ

dVt︸ ︷︷ ︸
non-compliant

(1.45)

which locally takes the form

ρη̇ ≥ ρr

θ
−∇ ·

(q

θ

)
+
ε̄− η̄
θ

(1.46)

For our analysis of constitutive relationships, it is useful to Legendre transform to the
free energy density ψ = ε − θη. After applying the time derivative and substituting
(1.44) for the internal energy, we obtain the free energy imbalance

ρψ̇ ≤ T : ḞF−1 − ρθ̇η − q · ∇xθ

θ
+ η (1.47)

This formulation of the second law of thermodynamics is known as the Clausius-Duhem
inequality in terms of the free energy density.
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1.3.3 Constitutive relationships

In the context of nonlinear elasticity, a constitutive law or constitutive relationship
relates strains to stresses2. For a hyperelastic material, stresses can be derived from
a scalar field called the strain energy density W . Its independent variables depend on
the modeling assumptions at hand. Typical assumptions in the context of modelling
biological tissues are:

1. Hyperelastic and isothermal materials, i.e. strain energy density depends only
on the elastic deformation gradient, W = W (A).

2. Incompressible materials, det (A) = 1.

3. All strains and stresses are diagonal.

For incompressible, isothermal, hyperelastic materials the Cauchy stress T can be
derived from the strain energy density as

T (A) =
∂W

∂A
AT − p1 (1.48)

where p is a Lagrange multiplier which enforces incompressibility. Incompressibility is
a typical assumption for soft biological tissues.

There is generally very little information on constitutive relationships in soft biolog-
ical tissues (see e.g. concluding remarks in (Taber, 1995)), and neo-Hookean materials
have proven very useful as modeling starting points. The strain-energy density func-
tion of a neo-Hookean solid in three dimensions is W (A) = µ (I1 − 3) where µ is a
material parameter and I1 is the first principal invariant of the right Cauchy-Green
strain tensor C = ATA for which I1 = tr C = α2

1 + α2
2 + α2

3 where αi, i = 1, 2, 3 are
the three principal elastic stretches. We obtain

W (α1, α2, α3) = µ
(
α2

1 + α2
2 + α2

3 − 3
)

(1.49)

1.3.4 Growth laws and literature review

In morphoelasticity, the evolution of growth is described as a differential equation in
time

Ġ = G (T,F,G,µ; t,x,X)

where the dot denotes time differentiation. Here, F and G are deformation gradients
as described above, T is the Cauchy stress, µ can be biochemical or other fields and
x and X describe positions in the undeformed and deformed body, respectively. The
growth law Ġ = G describes an active growth process which requires energy and
adds material, whereas the elastic accommodation (geometrically described by A) is
passive, adds no mass and consumes no energy (unless plasticity is involved). The
difficulty in stating growth laws is that the observed evolving form and mass of the
body are a result of both growth and its elastic accommodation. There is a lack of
data for constitutive relationships of biological tissues, let alone successfully retrieved

2Note that in the context of rational thermodynamics, the notion of constitutive relationships
carries a wider meaning. This will be discussed in section 1.3.5.
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growth deformations G, which makes the growth law Ġ particularly difficult to access.
Making reasonable statements about the form of G is the primary goal of this transfer
thesis and the D.Phil. thesis it lays the groundwork for.

The study of growth laws is in its infancy. Even the question of whether stress
or strain drives growth is not settled, every major review contains a debate on this
topic ((Taber, 1995; Ambrosi, Ateshian, Arruda, Cowin, Dumais, Goriely, Holzapfel,
Humphrey, Kemkemer, Kuhl et al., 2011; Jones and Chapman, 2012)). Here we take
the view that growth laws should be functions of stress Ġ = G (T) as a stress-free
configuration can be chosen as reference (a reference configuration for strain is less
obvious).

The simplest stress-dependent growth law which incorporates the idea of home-
ostasis is a linear coupling with Cauchy stress

Ġ = K (T−T∗) G (1.50)

where K is a matrix of constant coefficients and T∗ is the homeostatic stress. This
was studied in (Ramasubramanian and Taber, 2008). The authors run finite element
simulations on variations of two-dimensional beams glued in parallel, finding that
(depending on choices of K and T∗) the system either equilibrates or does not. further,
they study a delay differential equation version of 1.50 by replacing T (x, t) with
T (x, t− τ) where τ is a small delay, finding that depending on the delay and the
stiffness ratio of beams glued in parallel, either no oscillations, stress oscillations or
both stress and curvature oscillations of the beams occur. Finally, the authors study
invagination of cylindrical and spherical, fluild-filled or empty shells. Again, they use
a finite-element simulation in which the shell consists of passive material with a small
striped active region in the shell driving the invagination. They reproduce shapes which
somewhat resemble invagination. Overall, their analysis shows that (1.50) either leads
to stationary states of the growing system, or to unrealistic ever-growing systems,
depending on the choice of K and T∗, but stability is not analysed systematically.

In (Taber, 2008; Taber, 2009), the previous growth law is modified by adding
evolution equations for the target stress:

ĠG−1 = A (T−T∗) Ṫ∗ (T∗)
−1

= B (T−T∗)

where A,B are fourth-order tensors with constant entries. The systems analysed in
these papers are practically the same as in (Ramasubramanian and Taber, 2008) and
the conclusions are similar: For some parameter choices of A,B,T∗ (t = 0) actually
T and T∗ converge to the same equilibrium value. In other cases, they converge to
different equilibrium values, and in yet other cases the stresses diverge, reaching no
equilibrium at all. One fundamental problem with this model is that the equilibrium
values depend on the initial condition T∗ (t = 0) which should not be the case in robust
biological systems.

Based on the thermodynamic argument briefly discussed above, and discussed in
more detail in 1.3.5section, a growth law driven by Eshelby stress is proposed in
(Ambrosi and Guana, 2007)

Ġ = K (E−E∗) G (1.51)
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where E and E∗ are Eshelby stress and homeostatic Eshelby stress, respectively, and
K is a matrix of constant coefficients. The proposition that Eshelby stress drives is
supported by thermodynamical arguments ((Epstein and Maugin, 2000; Ambrosi and
Guana, 2007; Ambrosi and Guillou, 2007)).

In (Ambrosi and Guana, 2007), the authors take as their starting point a growth
law inspired by cardiovascular mechanics, in which G is diagonal (i.e. no shear) and
involves only the circumferential components of Cauchy stress. For diagonal G and
small deformations they show that (1.51) coincides with (1.50) up to a sign. By show-
ing results of particular numerical simulations (but without a general stability result),
the authors achieve convergence to the homeostatic stress in the case of displacement
boundary conditions but obtain a divergent (ever-growing) in the case of prescribed
load. Finally, they show that by adding passive layers (analysing a three rather than
one-layered system, with inner and outer layers passive), convergence towards home-
ostasis is also possible when the load is prescribed.

1.3.5 Thermodynamic restrictions of growth laws

In section 1.3.2, we have stated balance laws for various quantities. As opposed to
traditional continuum mechanics, in which conservation of mass, momentum, energy
can be granted, in the context of morphoelasticity we are dealing with open systems.
For open systems, the various quantities are no longer conserved and sources of mass,
linear momentum energy enter the equations, transforming conservation equations into
balance equations. Balance equations with sources present are given in 1.3.2, and it
is in this section that we will make full use of them, attempting to exploit the second
law of thermodynamics (in the Clausius-Duhem formulation) to derive restrictions to
and make statements about growth laws.

The standard procedure for for deriving restrictions to constitutive laws is known as
the Coleman-Noll procedure (Coleman and Noll, 1963). The framework which has been
built up around is known as rational thermodynamics. While it is very appealing for
its axiomatic buildup and mathematical elegance, some of its assumptions are rather
unorthodox and have been criticised as e.g. ’adventurous’ ((Maugin, 1999)) and ’out of
touch with physical reality’ ((Lebon, Jou and Casas-Vázquez, 2008)). However, for the
treatment thermoelastic solids, rational thermodynamics is quite elegant and produces
equations which are consistent with elasticity and traditional (equilibrium) thermo-
dynamics. For this reason, rational thermodynamics is widely used in the continuum
mechanics community ((Gurtin, Fried and Anand, 2010)) and has found application
to growing soft biological tissues.

Relevant ideas from rational thermodynamics. In the following presentation, we will
briefly describe the most relevant ideas and assumptions of rational thermodynamics
our purpose, also briefly highlighting some of its problems.

The most important and useful objective of rational thermodynamics is to place
restrictions on the constitutive relationships Ψ̂, η̂, T̂ and q̂ by means of the Clausius-
Duhem inequality in the form (1.47). The standard procedure by which this is achieved
is the Coleman-Noll procedure. Its objective is to restrict the constitutive relationships

Ψ̂ (A, θ,∇θ) η̂ (A, θ,∇θ) T̂ (A, θ,∇θ) q̂ (A, θ,∇θ) (1.52)
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It should be said that typically in solid mechanics literature unrelated to thermo-
dynamics, the term ’constitutive relationship’ relates to how strains are related to
stresses, which is the terminology we use in section 1.3.3. For hyperelastic materials,
as described in section 1.3.3, the constitutive relationship T̂ (A) can in fact be derived
from a strain energy density W (A). This is not assumed a priori in rational ther-
modynamics, but instead will be a result of the treatment of thermoelastic solids3.
In the context of rational thermodynamics, constitutive relationships characterise a
given material response. The Clausius-Duhem inequality, (1.47), with the constitutive
assumptions incorporated and multiplied by J , is

Jρ
˙̂
Ψ ≤ JT̂ : FF−1 − Jρθ̇η̂ − J

θ
q̂ · ∇θ + Jη (1.53)

It would be fair to ask at this point: If if in this context the Fourier heat flux q̂ is
considered a constitutive relationship, i.e. a material response, then why does this
not apply to the heat source r in (1.43)? After all, r is a volumetric heat source (r
stands for radiation) and q̂ represents heat entering through a volume boundary, see

1.43. Similarly, if T̂ is a constitutive relationship, why not the body force b̂ in (1.40)?
The answer is that rather than prescribing b and r as constitutive relationships about
which restrictions are to be inferred, they are defined in terms the linear momentum
balance (1.40) and energy balance (1.43), respectively. In other words, b and r are free
parameters making sure that the momentum and energy balance are always satisfied,
ruling them out of the restriction process of constitutive laws. As r and b are usually
supplied in applications (b might be gravity, for instance), rational thermodynamics
takes a somewhat ’perplexing attitude’, in the words of (Lebon, Jou and Casas-Vázquez,
2008), with regard to these balance laws.

To complete the chain of ideas of the Coleman-Noll procedure, we point out that
(1.53) is expected to hold for all admissible thermodynamic processes, which means
that it must hold for arbitrary deformation gradients and temperature fields. Since
the momentum and energy balance laws are ruled out by the argument in the previous
paragraph, the fact that (1.53) must hold for all A and θ puts restrictions on the
constitutive relationships (1.52).

Coleman-Noll procedure for morphoelasticity. We now use the constitutive assump-
tions (1.52) to evaluate the Clausius-Duhem inequality (1.53). Let us separately anal-

yse two important terms,
˙̂
Ψ and JT̂ : ḞF−1. By chain rule,

˙̂
Ψ (A, θ,∇θ) =

∂Ψ̂

∂A
: Ȧ +

∂Ψ̂

∂θ
: θ̇ +

∂Ψ̂

∂∇θ · ∇̇θ (1.54)

Evaluating JT̂ : ḞF−1 with F = AG, we obtain

JT̂ : ḞF−1 = JT̂A−T : Ȧ + JATTA−T : ĠG−1 (1.55)

3Both the fact that Ψ̂, η̂, T̂ and q̂ have the same arguments and the fact that ∇θ appears as a
constitutive argument (in addition to the obvious thermo-elastic parameters θ, A) are the results of
Truesdell’s principle of equipresence. In the words of G. A. Maugin, “This is simply a precautionary
medasure to avoid missing any significant dependence or coupling” ((Maugin, 1999), p. 65). See also
(Gurtin, Fried and Anand, 2010) p. 230 for a comment on equipresence.
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We now regroup the terms and divide by JG, taking into account JAρ = ρr and
J = JAJG. We obtain(

ρr
∂Ψ̂

∂A
− JAT̂A−T

)
: Ȧ + ρr

(
∂Ψ̂

∂θ
+ η

)
θ̇ + ρr

∂Ψ̂

∂∇θ · ∇̇θ (1.56)

≤ AT
(
JAT̂A−T

)
: ĠG−1 − JA

θ
q̂ · ∇θ + JAη (1.57)

We have made the assumption of a constant reference density (see comment after
1.36), which without loss of generality allows us to define ρr := 1 e.g. by rescaling
mass or volume.

As pointed out in the previous section, (1.57) is expected to hold for all defor-
mation gradients and all temperature fields. But it easy to construct a deformation
gradient A and a temperature field θ which at a particular point and time X0, t0 take

values A (X0, t0), Ȧ (X0, t0), θ (X0, t0), θ̇ (X0, t0), ∇θ (X0, t0), ∇̇θ (X0, t0) that are

independent4. For this reason, the coefficients of Ȧ, θ̇ and ∇̇θ must vanish. Taking
into account ρr = 1, it follows

Pr := JAT̂A−T =
∂Ψ̂

∂A
η = −∂Ψ̂

∂θ

∂Ψ̂

∂∇θ = 0 (1.60)

In this result rational thermodynamics shows itself from its most elegant side. It shows
how the first Piola-Kirchhoff Pr stress and the entropy are derived from the ther-
modynamic potential Ψ̂ which is consistent with traditional nonlinear elasticity and
thermodynamics. The Piola-Kirchhoff stress is given with respect to the stress-free con-
figuration Br, as one would expect from traditional elasticity. It also shows that the free
energy density is independent of the temperature gradient, suggesting (by equipres-

ence, see footnote 3) that (1.52) should be updated to Ψ̂ (A, θ), η̂ (A, θ), T̂ (A, θ),
q̂ (A, θ).

Taking into account (1.60), for (1.57) we obtain

0 ≤M : ĠG−1 +
JA
θ

q̂ · ∇θ + JAη (1.61)

where we introduced the Mandel stress Mr := ATPr.

4This is easy to show. Let us denote the values of A, Ȧ, θ, θ̇, ∇θ, ∇̇θ at the point X0, t0 by

underlined symbols A, Ȧ, θ, θ̇, ∇θ, ∇̇θ. We dropped the subscript m in θ for simplicity. The gradient
is understood with respect to the reference variable X, which we also dropped. Then

A (X, t) = A + (t− t0)Ȧ θ (X, t) = θ + (t− t0) θ̇ +
[
∇θ + (t− t0) ∇̇θ

]
(X−X0) (1.58)

With this choice of A and θ, it simply follows

A (X0, t0) = A Ȧ (X0, t0) = Ȧ θ (X0, t0) = θ ∇θ (X0, t0) = ∇θ ∇̇θ (X0, t0) = ∇̇θ
(1.59)

This shows that at X0, t0, the quantitiesA, Ȧ, θ, θ̇, ∇θ, ∇̇θ can be chosen to have independent values

A, Ȧ, θ, θ̇, ∇θ, ∇̇θ.
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Interpreting result of Coleman-Noll procedure. For simplicity, we assume that tem-
perature is spatially homogeneous, such that the q̂ · ∇θ term drops out, which leaves

Mr : ĠG−1 + JAη ≥ 0 (1.62)

In the spirit of rational thermodynamics, restrictive statements about the growth law
should only be the result of considering all possible deformations. We illustrate with
the simple growth law

Ġ =
(
T̂−T∗

)
G (1.63)

how such a restriction can be useful. Let us assume that G, Ġ, T̂ and T∗ are diagonal
and the material is incompressible (JA = 1). In this case, the Mandel stress coincides
with the Cauchy stress, Mr = T. Evaluating (1.62) yields

T̂ :
(
T̂−T∗

)
+ η =

(
t̂21 + t̂22

)
+
(
t̂1t
∗
1 + t̂2t

∗
2 + η

)
≥ 0 (1.64)

The first bracketed term is positive or zero for any deformation and therefore it cannot
contribute to a violation of the Clausius-Duhem inequality. In the second bracketed
term, however, t̂1t

∗
1 + t̂2t

∗
2 can potentially become negative at some point in space and

time X0, t0, and therefore requires an external source or sink of entropy to satisfy
the Clausius-Duhem inequality. This could be provided by some biochemically driven
self-organisation process. This suggests that a growth law of the form Ġ = T̂G is in
principle microscopically achievable at every time and position in the tissue without
further input or supporting mechanisms. However, no microscopic physical process
could achieve the contribution −T∗G without further supply of information.

1.4 Conclusions

Growth processes are abundant in nature, yet the rules governing them are inherently
complex. Moreover, growth occurs in different forms, and the varying types of growth
may be fundamentally different both on a biological and a mathematical level. The-
oretical and experimental analyses to understand growth processes on a mechanical
level have been developed over a number of years and a good deal of understanding
has been achieved. Of particular interest is the residual stress that can be induced in
a body by growth – exactly how and why it arises, and the role that it plays in elastic
materials are key issues.

We have presented in this chapter a summary of some of the key ideas and chal-
lenges underlying morphoelasticity. We illustrated the basic concept by considering
one-dimensional growth. Even in one dimension, interesting and challenging questions
arise. We then developed the full three-dimensional theory, with the question of how
to think about a residually stressed body culminating in the fundamental idea of mor-
phoelasticity, the decomposition of the deformation tensor into growth and elastic de-
formations. We then illustrated the process by considering a growing cylindrical tube,
demonstrating how growth can alter material properties through a stability analysis.
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Many problems remain unsolved in morphoelasticity, and the theory itself is far
from complete. One of the big future challenges in the field is in morphodynamics. In
particular, we discussed a continuously growing body as satisfying a relation

Ġ = G(G,A,T, . . . , ; X, t); (1.65)

however finding appropriate biologically derived growth laws G presents an important
challenge. Moreover, the incremental growth theory presented here largely becomes
impractical when studying non-symmetric deformations or geometries, and stability
in a continuous framework presents a much greater difficulty.
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Kröner, E. (1960). Alleganeine kontinuumstheorie der verzetsmugen and eigenspan-
nuugen. Arch. Ration. Mech. Anal., 4, 273–334.

Lebon, Georgy, Jou, David, and Casas-Vázquez, José (2008). Understanding non-
equilibrium thermodynamics. Springer.



References 25

Lee, E. H. (1969). Elastic-plastic deformation at finite strains. Trans. ASME J. Appl.
Mech., 54, 1–6.

Marsden, Jerrold E and Hughes, Thomas JR (1994). Mathematical foundations of
elasticity. Courier Dover Publications.

Maugin, Gérard A (1999). The thermomechanics of nonlinear irreversible behaviors.
World Scientific.

Ramasubramanian, A. and Taber, L.A. (2008). Computational modeling of morpho-
genesis regulated by mechanical feedback. Biomech. Model. Mechan., 7(2), 77–91.

Rodriguez, E. K., Hoger, A., and McCulloch, A. (1994). Stress-dependent finite
growth in soft elastic tissues. J. Biomech, 27, 455–467.

Skalak, R. and Hoger, A. (1997). Kinematics of surface growth. J. Math. Biol., 35,
869–907.

Taber, L.A. (2008). Theoretical study of beloussov’s hyper-restoration hypothesis for
mechanical regulation of morphogenesis. Biomech. Model. Mechan., 7(6), 427–441.

Taber, L. A. (1995). Biomechanics of growth, remodeling and morphogenesis. Appl.
Mech. Rev., 48, 487–545.

Taber, Larry A (2009). Towards a unified theory for morphomechanics. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 367(1902), 3555–3583.

Taber, L. A. and Humphrey, J. D. (2001). Stress-modulated growth, residual stress,
and vascular heterogeneity. J. Biomech. Eng., 123, 528–535.

Thompson, D. W. (1992). On Growth and Form: The Complete Revised Edition.
Dover, New York.

Vandiver, R. and Goriely, A. (2008). Tissue tension and axial growth of cylindrical
structures in plants and elastic tissues. Europhys. Lett., 84, 58004.

Yavari, A. (2010). A geometric theory of growth mechanics. J. Nonlinear Sci., 20,
781–830.


