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Abstract

Aggregation of the hyperphosphorylated tau protein is a central driver of Alzheimer’s disease,
and its accumulation exhibits a rich spatiotemporal pattern that unfolds during the course of the
disease, sequentially progressing through the brain across axonal connections. It is unclear how
this spatiotemporal process is orchestrated, namely, to what extent the spread of pathologic tau is
governed by transport between brain regions, local production, or both. To address this, we develop
a mechanistic model from tau PET data to describe tau dynamics along the Alzheimer’s disease
timeline. Our analysis reveals longitudinal changes in production and transport dynamics in two
independent cohorts, with subjects in the early stage of the disease exhibiting transport-dominated
spread, consistent with an initial spread of pathological tau seeds, and subjects in the late stage

disease characterised primarily by local tau production. Furthermore, we demonstrate that the
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model can accurately predict subject-specific longitudinal tau accumulation at the regional level,

potentially providing a new clinical tool to monitor and classify patient disease progression.

Teaser: A mechanistic model reveals tau protein dynamics in Alzheimer’s, showing stage-specific

shifts in transport and local production.

1 Introduction

Alzheimer’s disease (AD) is a devastating neurological condition resulting in progressive brain atro-
phy and cognitive decline. The toxic forms of two proteins, amyloid-8 (Af) and tau protein (tau)
are believed to act in concert to drive AD progression |1, 2]. The pathological roles of these proteins
in the human brain during AD have been investigated using positron emission tomography (PET),
with radiotracers such as [!®F|florbetapir and [!®F|flortaucipir allowing for in-vivo quantification of
Ap and tau, respectively [3]. While Aj tends to be more diffusely present throughout the cerebral
cortex [4, 5, 6, 7|, tau exhibits richer spatiotemporal dynamics, characterised by Braak staging [8].
Braak staging describes the trajectory of toxic tau, starting from the entorhinal cortex and sequen-
tially progressing to the limbic regions, the basal temporal lobes, the broader association cortex,
and finally the primary sensory cortex. This staging pattern has been validated using tau PET
imaging [9, 10, 11] and has been shown to be highly correlated with atrophy and cognitive decline
[12, 13], however, the mechanism for how tau staging is orchestrated remains unclear.

Growing evidence suggests that the progression of AD depends on two distinct factors: 1) the
local production of toxic proteins; 2) the transport of toxic proteins throughout the brain. However,
it has yet to be determined to what extent these factors contribute to the progression of AD and
whether their contributions change over time. There is now substantial evidence that tau propaga-
tion follows a prion-like mechanism, progressively forming toxic oligomeric seeds and neurofibrillary
tangles through an autocatalyic production process [14, 15|. The prion-like nature of tau has been
demonstrated with transgenic animal models in which cortical injections of tau seeds induce the
formation of tau aggregates that grow in concentration over time at the injection site and surround-
ing areas [16, 17]. In 2012, studies by Liu et al. and de Calignon et al. showed that transgenic
mice overexpressing pathological human tau in the entorhinal cortex exhibit accumulation of tau
aggregates and that tau invades axonally connected regions through transsynaptic transport to form
seeds in otherwise healthy regions [18, 19]. Prion-like aggregation and axon-based tau transport
have also been suggested in human postmortem studies [20] and in vivo studies using structural
connectome-based models of tau PET capable of reproducing observed tau aggregation and spread

[21, 22, 23, 24, 25, 26]. In a recent investigation, Meisl et al. analysed multimodal tau data from



Braak stage 3 onward and showed that tau production, not transport, is the main contributor of
tau progression [27]. However, the study does not account for the spatial progression across in-
dividual brain regions or estimate dynamics across the full AD progression timeline. Unanswered
questions remain about whether there are changes in tau production and transport rates over time
and whether the balance of these two processes changes along the disease timeline. To address these
outstanding questions, we develop a whole brain model capable of accurately describing longitudi-
nal tau PET data and conduct a multicohort study to analyse tau dynamics across the full disease
progression timeline.

To answer questions about temporal changes in AD tau dynamics in the human brain, an accu-
rate and reliable model of longitudinal tau observations is needed. In the past decade, there have
been numerous efforts to use mathematical models to better understand the spatiotemporal prop-
erties of AD pathology, ranging from linear diffusion models of tau [21, 22| to infinite-dimensional
spatiotemporal models of toxic protein aggregation |28|. Each of these models makes different as-
sumptions about the physical mechanisms of tau spread; however, there has not been a unifying
effort to rigorously compare commonly used models to identify which are best able to accurately
describe longitudinal tau PET observations. In addition, the models currently described in the
literature do not account for regional variations in tau dynamics, which has been shown to influence
tau progression [29, 30, 31] and are incapable of predicting longitudinal changes at the regional
level. Here, we present a novel model that provides a qualitative account of regional vulnerability
and its effect on tau progression. Using a previously developed Bayesian pipeline for longitudinal
tau modelling |32, 26|, we perform hypothesis-driven model selection on a family of common models
from the AD modelling literature, including a new model that accounts for regional dynamics. We
show that models that rely only on network diffusion or homogeneous tau production dynamics are
not sufficient to model regional longitudinal data, whereas models accounting for regional variations
in tau dynamics are able to accurately model longitudinal tau observations at a regional level.

We combine state-of-the-art modelling and inference methods with longitudinal tau PET data
from two independent cohorts to address the outstanding question of how tau transport and produc-
tion drive AD progression. To determine whether there are changes in tau transport and production
rates during the progression of AD, we apply our model to three groups representing different stages
of the AD timeline [33, 34]: (i) ATT*: amyloid positive, tau positive; (ii) ATT~: amyloid pos-
itive, tau negative;(iii) A~7T": amyloid negative tau negative, . We show that tau transport is
faster in early stage disease (ATT ™), and that there are primary and secondary increases in tau
production dynamics throughout the disease timeline. We validate these results on an independent

dataset using a different tau tracer, BioFINDER-2, on which the same results are obtained, further



showing that the model and results are robust and generalisable between datasets and the choice
of tau tracer. Finally, we validate our model by showing that it can forecast regional rates of tau
accumulation over time for individual patients. The combination of these methods provides a novel
pipeline for analysing and understanding longitudinal tau data, allowing us to compare changes in
disease dynamics throughout the AD timeline and predict subject-specific, region-specific changes

in tau over time.

2 Results
2.1 Deriving a generative model of tau dynamics

We first extend previous work [35, 36, 28] to develop a mechanism-based model of tau dynamics in
the human brain that can be calibrated using tau PET data. This model, called the local FKPP
model (which is a network version of the well-known continuous Fisher-Kolmogorov—Petrovsky—Piskunov
equation) and derived in full detail in Section 4.4, is given by a set of nonlinear ordinary differ-
ential equations on a structural connectome network of R nodes for the variables s; = s;(¢t) for

1 =1,..., R, representing tau SUVR in different regions of interest:

R
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The first term represents the contribution of tau transport between brain regions through a graph
Laplacian £ with uniform rate p for the i-th region, consistent with previous work [21, 22, 24,
36]. The second term represents prion-like production at the i-th region with uniform rate «
[26, 36]. Therefore, the local FKPP model describes future changes in tau SUVR as resulting from
a combination of transport through axonal connections and prion-like production. In this study,
regions of interest are given by the 68 cortical regions of the Desikan-Killiany-Tourville (DKT)
atlas, in addition to bilateral hippocampus and amygdala, therefore, there are R = 72 nodes in
the connectome model. We introduce two novel parameter vectors, regional baseline values, sq;,
and carrying capacities s ;, that represent a healthy state and a late stage AD state, respectively,
which add information about regional variations in production dynamics. To make the relationship
to regional variability in production rates of tau more clear, consider a change of variables to

¢i = (8i — 50i) / (S00,i — 50,i) for i = 1... R, then (1) becomes a standard (network) FKPP equation:

dg;

R
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with &; = & (Sco,i — 0,i). In this form, regional tau evolves between [0, 1] with a rate that depends on
the difference between regional SUVR, baseline values and carrying capacities, with larger differences
equating to faster regional tau production, making the notion of regional vulnerability more explicit.

These parameters are derived from the Gaussian mixture modelling approach used in [24], in
which a two-component Gaussian mixture model is used to describe healthy and pathological tau
SUVR distributions. (see Section 4.5 for more details). An example of this is shown in Fig. 1b
for the inferior temporal lobe, and the carrying capacities for the right hemisphere are shown in
Fig. 1c. Since these parameters are estimated from tau PET, they also encode specific features of the
tracer, such as regional differences in tracer uptake, specificity to 3R/4R tau pathology, on-target
binding and off-target binding, and therefore allow us to model tau SUVR directly. An example of
simulated regional trajectories is shown in Fig. la, encapsulating the effect of both transport and
production. A consequence of the variation of carrying capacities is that the regional production
rates also vary between regions, as seen in the middle panel of Fig. la, providing a qualitative
account of regional vulnerability. Using the rescaled local FKPP model (2), we can also track the
simulated concentration of tau in Braak regions, shown in the bottom panel of Fig. 1a, and we see
that the model correctly predicts the invasion of tau into Braak regions. The ability to account
for these regional variations extends previous models with homogeneous dynamics across regions

[36, 23| providing a picture of tau progression that is more consistent with observed tau staging.

Figure 1: Simulated transport and production dynamics in the local FKPP model.

la Simulation from the local FKPP model using carrying capacities derived from Gaussian mix-
ture models (shown in 1b). Simulations are initialised with a seed value of (sg; + Soc,i)/2 in the
bilateral entorhinal cortex, i = {27,63}, with p = 0.025 and o = 0.25. Each line in the mid-
dle panel represents the SUVR trajectory of one DKT atlas brain region. Values at time points
t = {0,15,30,45} years are projected onto a cortical rendering in the top panel. Each line in the
bottom panel represents concentration averaged over Braak regions, after rescaling simulated SUVR
as ¢; = (8; — 50,i) / (Soc,i — S0,i). 1b Two component Gaussian mixture model fit to a multi-cohort
tau PET dataset [24] and data from ADNI for inferior temporal lobe. Baseline values for each region
are taken as the mean of regional T~ distribution and the carrying capacity as the 99-th percentile
of the regional T distribution, and these are used to simulate the model in la and throughout
this paper. 1c Right hemisphere cortical rendering of the SUVR carrying capacities as determined
through Gaussian mixture modelling.

2.2 Regional Heterogeneity Is Necessary for Longitudinal Prediction

To determine whether the local FKPP is capable of fitting observed AD trajectories, we compare
it to tau PET data. For comparison, we also consider simpler models that can be obtained from
the local FKPP model Eq. (1), namely the global FKPP model, Eq. (12), obtained by assuming



that none of the parameters vary locally, the diffusion model Eq. (11) obtained by taking o = 0 in
Eq. (1), and the logistic model Eq. (10) obtained by neglecting transport between regions, p = 0.
We use hierarchical Bayesian inference to calibrate each model to tau PET data, allowing us
to quantify whether the model parameters can be identified from patient data and provide bounds
on uncertainty for group- and individual-level parameters. We use tau PET data from ADNI,
selecting A3 subjects who have at least three scans and are T in the medial temporal or lateral
temporal lobe (see Section 4.1 for details). We employ two metrics to compare models, the Bayesian
information criteria to measure accuracy against in-sample data and the expected log predictive
density (ELPD) to measure out-of-sample predictive accuracy, both provided in Table 1. Fig. 2a
shows the in-sample longitudinal fit for each of the four models and Fig. 2b shows the regionally

averaged out-of-sample longitudinal fit.

Figure 2: Model Fit for In-sample and Out-of-Sample Data.

2a Goodness of fit for four models, local FKPP, global FKPP, diffusion and logistic. For all panels,
each point represents a region in the connectome model, averaged over subjects per scan. Top
row shows estimated vs observed SUVR values. Bottom row shows estimated change vs observed
change in SUVR. Only the local FKPP and logistic model are able to accurately capture longitudinal
changes, while the global FKPP and diffusion models are each structurally incapable of describing
heterogeneous production. 2b Out-of-sample fits for four models of proteopathy. Top row: predicted
vs observed out-of-sample SUVR. Bottom row: predicted change vs observed change from first in-
sample scan to last out-of-sample scan. Each point represents a region in the connectome model,
averaged over subjects.

The local FKPP performs best for both in-sample fit and out-of-sample predictive accuracy,
followed by the logistic model for in-sample fit and the global FKPP model for out-of-sample fit.
The results show that the diffusion model is not suitable for longitudinal modelling of tau PET
data, clearly shown in Fig. 2a and Fig. 2b, since there is no mechanism for tau production or
clearance and therefore the total concentration is conserved. The global FKPP model can capture
changes in tau load, but it cannot describe the regional heterogeneity in tau production. The
deficiencies in production dynamics of the diffusion and global FKPP models are addressed with
the local FKPP model and the logistic model and the ability of these models to accurately describe
longitudinal tau PET underlines the importance of including regionally specific production rates.
The logistic model is capable of describing the trajectory of tau PET despite not being able to
capture the transport of tau through the structural connectome, suggesting that AT™TT subjects
may already have widespread invasion of tau seeds. However, the logistic model underfits changes

in SUVR, particularly in the low SUVR range. The error in model fit relative to the final in-



Local FKPP Global FKPP Diffusion Logistic
BIC -33889.2 -32823.1 -20539.1 -33138.7
ELPD 638.22 622.68 -175.579 607.14

Table 1: Assessment of model fit using the Bayesian information criteria, BIC, and the expected
log predictive density, ELPD. Lower values are considered better for the BIC and higher values are
better for the ELPD. The local FKPP model performs best in both metrics.

sample scan is shown in Fig. S1 for the local FKPP, global FKPP and logistic model. The residual
analysis shows that the logistic model is prone to underestimate SUVR (mean error = —0.02, s.d. =
0.02), particularly for lower SUVR ranges, as shown in Fig. S1, while the error in the local FKPP
(mean error = —0.01, s.d. = 0.02) and global FKPP (mean error = 0.005, s.d. = 0.03) is more
balanced between regions. This indicates that initial tau deposition may be driven by transport
between regions. Additionally, the global FKPP has a higher variance in predictions, often either
overestimating or underestimating SUVR as a result of regionally homogeneous dynamics. Overall,
the data support the use of the local FKPP model, as evidenced by its being the most capable of
describing in-sample and out-of-sample data, while also capturing the role of both tau transport

and local tau production.

2.3 Local model forecasts regional tau progression

A major possible benefit of the mathematical modelling of AD lies in its application to clinical
and pharmacological research, particularly by predicting the progression of the patient’s disease.
Here, we show that the local FKPP model can be used to accurately forecast the trajectory of tau
PET. We divide the ADNI ATTT cohort into train and test cohorts. We define a fixed training set
comprising n = 41 subjects who have three longitudinal scans. For the remaining N = 16 subjects
with more than three longitudinal scans, we perform inference three times, each time adding an
additional scan to the training set, starting with a single scan. The resulting posterior predictive
trajectories for the left inferior temporal lobe are shown in Fig. 3. In Fig. S2 we provide the posterior
predictive trajectories without observation noise, highlighting the uncertainty in model parameters.
The results show that a single scan is often insufficient to provide meaningful forecast accuracy,
despite benefiting from information pooled across subjects in the hierarchical Bayesian model. This
greatly improves with the addition of a second data point; however, in some cases this produces
inaccurate forecasts of future data if there is a decrease in tau SUVR, perhaps due to atrophy. With
the addition of a third data point, the results generally converge with low uncertainty and accurately
forecast future observations. Similar results are shown in the supplementary information for the

entorhinal cortex Fig. S3 and Fig. S4. The results suggest that a more constrained approach which



Figure 3: Out-of-sample fit and posterior predictive plots for the left inferior temporal
region.

The local FKPP model was iteratively calibrated to a AT™TT ADNI cohort with 41 in-sample
subjects and 16 test subjects. Three iteration were run where for each iteration an additional scan
from the test subjects were included, starting with a single scan. Posterior predictive trajectories for
left inferior temporal lobe are shown for each iteration (neglecting observation noise). In the above
figure, each panel represents one of the 16 test subjects. Each point represents a data point added
for a training iteration; trajectories are color matched to correspond to the number of longitudinal
data points included for training.

more heavily weights the effect of population priors on forecasts may prove fruitful in circumstances
in which there is insufficient data to capture an individual’s trajectory. Nonetheless, these results
demonstrate the power of a simple model based on key biological priors (namely the connectome,
regional baseline values, and regional carrying capacities) and two free parameters to forecast the

regional progression of tau PET that may provide benefit to clinical and pharmaceutical researchers.

2.4 Early AD progression is driven by tau transport

Next, we sought to determine whether there are any changes in tau production and transport
dynamics across the AD progression timeline. To do so, we use two cohorts of tau PET data, ADNI
and BioFINDER-2 (BF2), each divided into three groups, ATT*, ATT~, A~T~, representing
different stages of AD. Since BF2 uses a different tau PET radiotracer, we rerun the Gaussian
mixture modelling analysis to recover the tracer-specific baseline and carrying capacities. We then
apply the NUTS sampling algorithm to the hierarchical Bayesian model to obtain samples from
the posterior distribution, Eq. (17), providing distributions for model parameters at the population
level and individual level.

The distributions of the population parameters for the AYT+, ATT—, A=T~ groups are shown
in Fig. 4a for ADNI and Fig. 4b for BF2 and are summarised in Table 2. The posterior distributions
between cohorts are qualitatively the same, with changes likely reflecting differences in cohort and
tracers. The inferred parameters show an increase in the transport rate for the ATT~ group
compared to the ATTT and A~T~ groups, suggesting that tau spreads more easily between regions
during the early stages of the disease and is minimal in the later stages of AD. The inferred posterior
distributions for the production parameter show a progressive increase in the production rate along
the disease timeline, with a primary increase from the A~T~ to the A™T~ group and a secondary
increase from the AT~ group to the ATTT group. The negative production rate for the A=T~

group indicates that the signal, on average, decreases. This could reflect changes in noise due to



off-target, nonspecific binding, or atrophy from non-AD related neurodegeneration. These results
suggest that in early AD tau begins in a transport-dominated phase (p > «) and then switches to

a production-dominated phase (a > p).

Figure 4: Inferred population level parameters using ADNI and BF2 tau data.

4a & 4b Population production and transport parameters across ATTT, AT~ and A~T~ groups
for ADNI (4a) and BF2 (4b) tau PET data. 4c & 4d Inferred population production and transport
parameters from spatially shuffled data (shown in grey) compare to inferred distributions from true
data for ATTT (4c), ATT~ (4d) ADNI groups. Asterisks between groups denotes distributions are
significantly different (p < 0.01), tested using the Mann-Whitney U test.

To confirm that the parameter distributions reflect meaningful dynamics present in the data
and are not as a result of statistical patterns, we rerun the analysis on the AT™T~ and ATT" groups
using spatially shuffled data. A comparison of the posterior distributions obtained shuffled data
and those obtained from true data are shown in Figs. 4c and 4d. Note that we only spatially shuffle
the data and therefore expect minimal changes to the estimated production parameters. We note
a marked difference in the estimated transport dynamics in both the AT™T~ and AT™TT groups
between the true and shuffled data, confirming that the dynamics present in the data are not a
consequence of statistical patterns in the data, but represent tau dynamics measured through PET.

To examine whether the negative production rates observed in Fig. 4 are a result of regional
atrophy, we rerun the analysis in the ADNI cohort with partial volume correction applied [37, 38].
The population-level posterior distributions resulting from this analysis are shown in Fig. Sba. The
results are qualitatively the same as those obtained using non-PVC data Fig. 4, with increases in
tau production along the AD progression timeline and a faster transport rate in A™T~ subjects
compared to ATTT and A~T~ subjects. However, using PVC data results in an increased produc-
tion rate for the AT~ and ATT~ groups, largely eliminating the negative production rate observed
with non-PVC data. This suggests that the negative production rate observed in Fig. 4 primarily
results from brain atrophy outpacing tau production, resulting in a net reduction of SUVR.

Additionally, we rerun the analysis using an eroded white matter reference region, which has
been suggested as a more effective reference region for longitudinal analysis [39]. The posterior
distributions for this dataset are shown in Fig. S5b. The results show a similar transport effect to
Fig. 4. However, there are significant differences in the inferred production parameters. The ATT~
and ATTT groups both display higher production than the A=T~ group, however, there is no
significant difference between the ATT~ and ATT™ groups. After further analysis, we believe this

effect is due to positive correlations in the reference region and the target SUVR that reduce group



differences and limit interpretation of the longitudinal analysis (analysis provided in supplementary
information Section S1.3).

The large parcels present in the DKT atlas may affect the detail in which production and trans-
port dynamics are present in the data, since data is averaged over large parcels with heterogeneous
volumes. To address this, we rerun the analysis using the Schaefer-200 atlas [40] provided in the
ENIGMA toolbox [41]. The population-level model parameters for the AT+, AT~ and A~T~
groups are shown in Fig. S7. The transport parameters between groups are qualitatively similar
to those shown in Fig. 4, further supporting an initial phase of accelerated tau transport. The
production parameter was higher for the A™TT group compared to the A™T~ and AT~ groups,
consistent with the DKT atlas. However, there is no longer a substantial increase from AT~ to
ATT~, with the two groups showing similar tau production rates, possibly as a result of greater
sensitivity to tau-related atrophy effects due to smaller parcel sizes.

The transport dominated phase of the early AD subjects supports evidence showing tau seeds
are present throughout the cortex before symptom onset |20, 42] and, together with the small role
of transport in the A™TT groups, helps explain the strong performance of the logistic model in
Section 2.2. Overall the results reveal temporal changes in the dynamics of tau progression, with
an initial transport dominated phase, perhaps in which seeds are deposited around the cortex,
followed by a production dominated phase indicative of secondary tauopathy, likely due to spatial

colocalisation with AS catalysing tau production.

Group Pu Do oy Qg

ATTT 0.01 0.01 0.13 0.1

ADNI ATT—  0.02 0.04 0.02 0.23
AT~ 0.02 0.11 -0.04 0.19

ATTT 0.004 0.01 0.11  0.09

BF2 ATT~ 0.02 0.02 0.02 0.22
A-T— 0.02 0.08 -0.03 0.20

Table 2: Summary of inferred posterior distributions providing the means of inferred population
parameters for ADNI and BF2, where p,, is the average of population transport parameter, p, is the
standard deviation of the population transport parameter, o, is the average population production
parameter, o is the standard deviation of the population production parameter. Parameters are
shown for each of the ATT+, ATT~ and A~T~ groups.

3 Discussion

We have derived a physics-based generative model to describe tau PET data in terms of underlying

tau dynamics and applied it data from ADNI and BF2 to understand how it compares to other mod-
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els present in the literature and how it can inform us about tau transport and production dynamics
in the human brain. We have shown that this model can forecast accurately longitudinal regional
tau PET progression in AD subjects. Furthermore, by performing inference across different patient
groups across the AD disease timeline, we uncover temporal changes in transport and production
dynamics, showing an initial transport dominated phase associated with primary tauopathy and
seeding, followed by an accelerated production dominated phase indicative of secondary tauopathy.

Several studies have proposed different models of proteopathy in AD, a key difference between
them being descriptions of the tau production process, which vary widely in complexity 22, 28, 24,
43, 27, 25, 26]. Here we present a parsimonious model of tau transport that relies on regionally
specific carrying capacities and show, through model selection Section 2.2, that it is capable of
outperforming other models proposed in the literature. A possible cause of regional heterogeneity
in carrying capacities is heterogeneity in regional risk factors that promote tau proliferation, the
most likely of which is AS. AfS has its own spatial topography within AD patients, being particularly
present throughout the fronto-partietal-temporal default mode network and stimulating neuronal
hyper-activation [11, 44, 45|. The presence of A will have a two-fold effect on tau dynamics, first
through a catalysing effect on tau production [46, 47, 48| and second through the promotion of
activity-dependent spread and production through functional networks [49, 50]. In Thompson et al.
2020, we formulated a model describing the dynamic interaction between A and tau, that predicts
an increase in carrying capacities based on Af concentration [51], however, further work toward
simplifying the model will be necessary before it can be used for inference with patient data.

Another key set of factors that contribute to regional vulnerability are genetic markers. It has
already been shown in mice models of AD that gene expression patterns can inform tau spread
[31] and human models of Parkinson’s disease have shown how gene expression patterns can inform
regional vulnerability to create a model of toxic protein spread in Parkinson’s disease [52]. There
are several candidate genes for modelling regional vulnerability in AD, most notably the micro-
tubule association protein tau (MAPT), as a proxy for relative baseline tau vulnerability [53] and
apolipoprotein-E (APOE) for those patients with the APOEe4 mutation |29, 54, 55]. Although
there are many other candidate genes that can influence regional vulnerability, care should be taken
to avoid creating overdetermined models. In summary, while the work here provides compelling
evidence for the need for regional vulnerability, further work should seek to explain the mechanisms
through which regional carrying capacities emerge from a culmination of regional risk factors, such
as A deposition and gene expression patterns.

There is extensive evidence of tau transport and production throughout the brain, however, it

has not yet been determined whether one of these processes dominates the other and whether their
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relative contributions to disease progression change over time. To this end, we sought to determine
whether inferred parameters of our model change in groups across the disease timeline. We find
that during the early stages of the disease, when there is a low concentration of tau in the medial
temporal lobe, tau dynamics are transport-dominated but become production-dominated later in
the disease. This supports previous work by Meisl et al. [27] who show through an analysis of
multiple datasets and methods of tau quantification that tau dynamics are production dominated
from Braak stage 3 onwards. This is consistent with our work, considering individuals who are
positive on tau PET in early Braak stage regions may already show fairly advanced Braak stages
at autopsy [56] analogous to individuals at middle Braak stages used by Meisl et al. 2021. These
results suggest that, in early AD, tau seeds invade connected regions from the medial temporal
lobe, but the overall concentration does not grow substantially. Only in later stages of AD is the
spread production-dominated and driven by fast increases in concentration gradients, leading to
progressive Braak-like staging. These results also support the utility of the logistic production
model in being able to describe longitudinal ATT* data (Fig. 2a & Fig. 2b), since seeds would
already be densely present around the cortex and progression is driven by tau production. The
results are also consistent with experimental evidence showing that tau seeds are present before tau
pathology [20, 42].

Together the results indicate an intrinsically spatiotemporal process, with variations in both
tau transport and production along the AD timeline. Our results suggest that there is an initial
transport-dominated tauopathy that results in tau seeds spreading from the medial temporal lobe
to axonally connected regions. This initial phase is followed by a secondary production-dominated
tauopathy with accelerated regional accumulation and slower transport, capable of reproducing se-
quential Braak like staging such as in Fig. la. This contrasts to the largely temporal process of
Ap, described by [57], where initially AS is present throughout the brain, but increases concentra-
tion at different rates due to regional vulnerabilities. Our results suggest that the early period of
AD during which tau is more easily transported between brain regions may be a critical time for
intervention. Many immunotherapies currently being developed act on extracellular tau [58] and
should therefore interrupt tau transmission through the extracellular space of the synaptic junction.
If AD is a consequence of first tau spread and then tau production, it will be crucial that these im-
munotherapies are administered early in the AD process to halt the widespread transmission of tau
before accelerated local production can occur. In contrast, therapies that act to reduce intracellular
tau concentration should be effective in slowing AD progression throughout the AD continuum,

regardless of whether widespread tau transmission has occurred [59].
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This work presents a step forward in whole brain tau modelling, however, there are still many
obstacles that are not addressed here. There are limitations that pertain to the sparsity of longi-
tudinal data. In this work, we fix a number of parameters to ensure the practical identifiability
of the models given the available data. In particular, we fix baseline values and carrying carry-
ing in the dynamical system, and subject initial conditions in the probabilistic model. By fixing
baseline values and carrying capacities, we are unable to determine whether these also undergo
dynamical changes. This also limits the direct application of the model to other tauopathies that
exhibit different tau PET profiles. A related limitation is the particular choice of parameterisation
for regional vulnerability. Here, we have chosen to parameterise regional vulnerability as changes
in regional carrying capacities scaled by a single free parameter. Future work should investigate
whether more expressive models, such as regional free parameters or dynamically changing param-
eters influenced by other risk factors, such as amyloid, are more informative about longitudinal
biomarker data. Second, there are limitations related to the scale at which we are modelling. While
the model we present here is derived from a physics-based model, the model reduction comes at the
cost of a loss in mechanistic insight into precise transport and production mechanisms. This will
remain a hard limitation while we work with macroscale brain data. In addition, tau PET data is
intrinsically limited by resolution, inability to detect early changes, and non-specific and off-target
binding sources, collectively providing a source of uncertainty that affects parameter identifiability
of intricate processes such as transport. Therefore, while the modelling results suggest changes to
transport and production across the AD continuum, our conclusions are limited by the nature of
PET measurements and require experimental validation. A potential avenue to address this lim-
itation will be the development of multi-scale models that rely on in-vitro or animal studies for
calibration and permit macro-scale reduced order models. Third, as increasing longitudinal scans
are added to inference, the overall uncertainty decreases, as shown in Fig. 3 and Figs. S2 to S4, and
does not always accurately capture out-of-sample regional data points. This likely results from the
assumption of independent and identically distributed noise across subjects, scans and regions. As
a result of the sequential staging of tau, there are likely to be more regions that have low signal
and low longitudinal change and therefore the grouped noise parameter will be driven by these
regions and underestimate noise in regions of high tau production. Future work should incorpo-
rate more specific noise models that account for changes in observation noise with the amount of
signal, for example a multiplicative noise model that assumes that noise scales proportionally to
signal. Finally, and perhaps most importantly, the model as presented here has limited application
to real world clinical data, since most patients are not monitored with longitudinal tau PET and

would therefore lack the necessary data with which to calibrate the model. Therefore, while the
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model can provide useful mechanistic insights, it may not provide immediate clinical utility. We
envisage two main applications of the current work. First, to provide motivation for experimental
work into understanding changes in tau spreading in-vivo across the AD timeline. Second, direct
applications to pharmaceutical trials, in which longitudinal tau PET is more readily available, to
inform optimal intervention periods and testing patient trajectories against model predictions. The
limitation on data availability may be eased by future work to incorporate fluid biomarker data into
the modelling pipeline, as a less invasive and more readily available measure of tau burden. Fluid
biomarkers can provide valuable information on tau production levels in-vivo [60, 61] that could be
used to calibrate simplified spreading models such as the logistic model presented here, or similar
asymptotic approximation to the local FKPP model that require only a production parameter [62].

The primary contribution of this work has been to provide a parsimonious account of regional
tau dynamics in AD. Future work should seek to build on this, adding more information and data
to probe the unexplained dynamics in AD. Most pressingly, these include dynamical interactions
between A and tau in a sufficiently simple way to accommodate the ability to perform inference
with patient data. Furthermore, the study sheds light on potential avenues of clinical investigation of
anti-tau therapies by showing how targeting different tau processes (transport or local production)

at different times during the AD continuum may be essential for effective intervention.

4 Methods
4.1 Data Processing

We use PET from the Alzheimer’s Disease Neuroimaging Initiative (adni.loni.usc.edu). ADNI is
a public-private partnership with the aim of using serial biomarkers to measure the progression of
AD. For up-to-date information, see www.adni-info.org. We download fully processed tau PET
and magnetic resonance image (MRI) data, summarised as standardised uptake value ratios (SUVR)
and volumes for each of the regions in the Desikan-Killiany-Tourville (DKT) atlas. We renormalise
individual SUVR using an inferior cerebellum SUVR reference region. Amyloid status for ADNI
subjects was also downloaded from ADNI and used to classify subjects, with AS positivity requiring
cortical summary florbetapir SUVR > 0.78,using the composite reference region provided by ADNI,
comprising the whole cerebellum, brain stem and eroded white matter.

We also use data from the Swedish BioFINDER-2 study (NCT03174938), which uses the RO948
tau PET radiotracer. All participants were recruited at Skane University Hospital and the Hospital
of Angelholm, Sweden and the cohort covers the full spectrum of AD, ranging from cognitively

normal individuals, patients with mild cognitive impairment (MCI) and with dementia. All details
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about the cohort have been described previously [63]. Amyloid status was determined by amyloid-
PET (flutemetamol) with the pons used as the reference region, based on a previously established
cutoff from Gaussian mixture modelling as detailed in [60], with positivity requiring flutemetamol
SUVR > 1.03. The tau data are analysed using the analysis pipeline detailed in [63]. Briefly, SUVR
images were generated using the inferior cerebellum as a reference region, and average SUVR was
extracted for regions in the DKT atlas. Four subjects in the BF2 ATT~ group are removed due
to high off-target binding in the skull/meninges or MRI registration problems. In both cohorts we
select only subjects who have at least three tau PET scans to allow for inference on the time-series
model. ADNI and BF2 tau PET data are summarised in Table 3.

Group N Sub. Age Female Edu. CN MCI AD ApS Mean AQf s.d.

ATTT 57 72.61 0.54 16.37 0.28 0.53 0.19 82.26 34.01
ADNI  ATT~ 37 76.23 0.49 16.49 0.70 0.32 0.03 49.15 38.42
AT 53 71.76 0.48 16.48 0.57 0.42 0.03 0.14 13.43
ATTT 54 73.9 0.65 11.6 0.2 043 0.37 70.68 30.59
BF2 AYT™ 18 72.1 0.5 132 0.61 0.31 0.08 24.56 31.89
AT 53 66.9 0.5 128 081 0.19 0.0 -7.31 5.98

Table 3: Demographics for ADNI and BF2 cohorts. A8 mean and standard deviations are provided
in centiloids.

We perform inference over three groups: A~T~, ATT~, ATTT We distinguish between 7'~ and
T using a tau PET SUVR cut-off for two composite regions, as detailed in [34]. There are two
cut-offs, one for determining tau positivity in the medial temporal lobe (MTL, defined as the mean
of the bilateral entorhinal and amygdala), and another for neocortical positivity (defined as the
middle temporal and inferior temporal gyri). The thresholds for the composite regions are based
on regional Gaussian mixture models, as previously described [24]. For each composite, we average
the SUVR values from the constituent regions and fit a two component Gaussian mixture model.
The threshold for the region is then set to the SUVR at which there is a 50% chance of being
T*. For ADNI, the thresholds are 1.375 and 1.395 and for BF2 they are 1.248 and 1.451 for the
MTL and cortical composites, respectively. We define a subject as being T if their last scan is
suprathreshold in either the MTL or cortical tau PET SUVR and T~ if the SUVR value is below
both SUVR, thresholds.
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4.2 Mathematical Models of proteopathy

4.3 Structural Connectome Modelling

We use the structural connectome to model the transport of tau between brain regions. To generate
structural connectomes, we use diffusion weighted MRI images of 150 healthy individuals from
the Human Connectome Project (HCP) [65, 66]. From these data, connectomes are derived using
the probabilistic tractography algorithm probtrackx [67], available in FSL, using 10000 samples per
voxel, randomly sampled from a sphere around the voxel centre. The number of streamlines between
each of R regions in the DKT atlas are summarised as an adjacency matrix, A, that defines our
connectome graph, G. To model transport of tau between regions, we use the graph Laplacian of
G, given by:

L=D-A, (3)

where D is the degree matrix, D = diag(A - 1). To ensure a transport process respects mass

conservation across regions of varying volumes, we weight the graph Laplacian by regional volumes,
L=VIL (4)

where V = diag (v/v,), and v = (v1,vg,...vR) is a vector of regional volumes and v, is a reference
region. In Section 2, we model three groups of subjects, A=T—, A™T~ and ATT™, to reflect changes
in volume across the disease timeline and variation in individual brain volumes, we define v and
v, on a group and individual level, respectively. For a given group with IV subjects, we define the

normalised volume of a region v; as

N
1 vy’
L 5
(% N U:}a ()
n

taking v}’ as the initial volume of the 7th region and nth subject and v} is as the maximum initial
regional volume for the nth subject. Then v is the average normalised volume per subject in a
cohort.

The graph Laplacian is used in the next section to derive models of tau propagation on the brain

network.

4.4 Local model of Tau Proliferation

We start with a coupled model of healthy and toxic protein, the heterodimer model, from which we

alm to derive a simplified model of toxic protein dynamics that includes regional information. The
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heterodimer model on a network is:

R
dp; 5 i
’r = —pjzlﬁijpj + ko — kipi — k12pips, i=1,...,R, (6a)
dﬁ R ~
dat _p;Eijpj — k1pi + k12pipi, i=1,...,R, (6b)

where p; , p are, respectively, the healthy and toxic protein concentration at node i, kg is the natural
production rate of healthy protein, k1 and ky are the clearance rates of healthy and toxic proteins,
respectively, and kjo is the rate of conversion from healthy proteins into toxic proteins [36]. To

simplify the heterodimer model, we can follow a similar procedure to that presented in [36], by

linearising around a healthy state. Assuming an homogenous state with p; < p;, implies Ciﬁi =0

and — Z? Lijpj =0 for ¢ =1... R. Then, linearising around p = 0, we have

_ ko k12 .
pi(Pi) ,ﬁ( k1p>

Substituting this expression for p; into equation (6b) we obtain,

- R
dp; - - - .
dil_)t = —p E *CZ]p]+apl_Bp127 1= 17"'7R7 (7)
j=1
where 9
ko ~ kokiy
= —kis—k and a= . 8
B oy 12 1 ;2 (8)

From here we derive a model for tau PET SUVR, s; = s;(¢) for i = 1,..., R, with regional carrying
capacities and baseline values to model with the requirement that at node i, the healthy state
corresponds to a baseline value of s; = so; at ¢ = 0 and the fully toxic state has asymptotic value
8; = S00,i as t — Foo. To accommodate regionally varying carrying capacities and a regionally
uniform production rate, we asssume reginoally varying clearance, ki — IEU fori = 1,...,R,
making 8 — [; regionally depedent. With this assumption, we can introduce the local FKPP

model

R
dSi .
—=—p Y Lij (55— s05) + (si = 50) (500 — 500) = (si —s04)],  i=1,...,R, (9

at -~ P
j=1
where (s; — so;) represents a shift to regionally dependent nonzero baseline SUVR values and So0; =
Bia 4 50,; is the region carrying capacity at node i.
Then, the logistic model is then simply obtained by taking p = 0:
ds;

E = (Si — SOJ‘) [(Soo,i — Soﬂ') — (Si — 8071‘)] s = 1, ey R, (10)
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where at each node the variable s; connects asymptotically, for ¢ — o0, the healthy state sg; to
the toxic state S ; (Which implies there is no mechanism for propagation from node to node in this
model). The diffusion model assumes o = 0 in Eq. (9):

R
dSi .
(ﬂ:pjzgﬁij(sj507j)’ i=1..., R, (11)

where there is no mechanism for production. The global FKPP model is taken by assuming regionally

homogeneous baseline values and carrying capacities across all nodes:

, R
% =—p>_ Lij(si—50) + alsi = 50) (500 — s0) = (si = s0)],  i=1,...,R. (12)
7j=1

A method for determining the values of s, Sg, Se0, and sg are provided in the next section.

4.5 Estimating fixed model parameters

To estimate the fixed parameters for sg and s, we fit a two component Gaussian mixture model to
population level data of regional SUVR. For regions in which a reliable measure of tau SUVR can
be obtained, we expect to see two separate distributions, a T~ distribution capturing the expected
tau load in a given region, and a T distribution describing the pathological tau load [24]. Using
the fitted Gaussian mixture models, we approximate sg; as the mean of the 7~ distributions for the
i-th region and s ; as the 99-th percentile of the T distributions for the i-th. These parameters
are used to simulate Eqgs. (9) to (11). To simulate from Eq. (12) we take so as max(sso) and sg as
min(sp). For subcortical regions it is not possible to obtain reliable tau PET signal due to off-target
binding [68, 69] and we therefore exclude these regions from our model, leaving a total of 72 regions.
For ADNI, we use the multi-tau cohort of AV1451 PET data, detailed in [24]. For BF2 data, we
use all available RO948 PET scans. For all regions used, including the bilateral hippocampus and
amygdala, a Gaussian mixture with two components provided a better fit to the data than a single

component data, compared using the AIC score.

4.6 Probabilistic model

For each of the three groups, ATT", AT™T~, A=T~, we use a hierarchical model, factoring over
patients and scans. In each group there are N subjects, each of whom have T}, scans, forn =1... N
subjects, summarised over R regions, (R = 72). The observations times, i.e. scan dates, are denoted

by t =7 for j=1...T,, n=1... N. We denote the full data set for a group as Y and individual
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subject data as Y;f;,

we have the following data generating function:

corresponding to the nth subject, at scan j and region i. For a single subject,

Y" = f(yl, 0%, t") + e (13)

where Y™ is the individual data for R regions and T;, time points, with initial conditions y(, model
parameters 6, and observations times t. The data are generated by a dynamical systems, f, with
observation error e. To derive a likelihood function from Eq. (13), we assume the observations
errors are independently and identically distributed and sampled from a Gaussian distribution with
standard deviation . The data generating distribution for a single observation from a subject is

then:

e ~ N(0, 02) (14)
Y™ ~ N(E(y2, 6, t"), 0°T) (15)

To extend this to a hierarchical population model, we define random variables, © = {(p;, a;)} Y,
encoding subject specific model parameters and hierarchical population parameters, Q = {p,, po, 0, o },
upon which each ©; depends. In Sections 2.2 and 2.4, we assume fixed initial conditions, yy, and
observations times, t™, taken as the first tau PET scan and scan dates respectively. Then the

likelihood function for a single subject under the hierarchical model is:
T R
(Y™, 0, | Q0. y5.t") = [[[[ (Y3} | On.0,¥6,t]) p(On | Q) (16)
i

where the first term inside the product on the right hand side is the contribution of the subject
level model and the second term is the hierarchical model. Then the posterior for all subjects,

hierarchical parameters, subject specific parameters and observation noise is:
N
p(©,Q,0 | Y, t,y0) < [[p(Y", 00 | 2,0,y5,t") p(Q, 7). (17)
n

4.7 Inference Algorithm

We run inference for each patient group separately using a Hamiltonian Monte Carlo No-U-Turn
Sampler (NUTS) to sample from the group posterior distribution. We use the same priors across
patient groups, provided in table 4. We use weakly informative priors based on scales at which
we expect to observe parameter values and ensure the transport parameter is positive. The NUTS

sampler is initialised with a unit diagonal Euclidean metric and a target acceptance ratio of 0.8.
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For each patient group, we collected four chains each with 2000 samples. All chains showed good
convergence (measured by 0.99 < 7 < 1.01) with no post warm-up numerical errors associated with

the NUTS sampler.

Parameter Prior Support
Py Lognormal(0,1) [0, o]

Po Lognormal(0,1) [0, o0]

ay, N(0,1) [00, o0]
Oy Lognormal(0,1) [0, o]

Pi N(P/u pcf) [07 OO]

o N (o, ag) [—00, 0]
o Lognormal(0,1) [0, o]

Table 4: Prior distributions for hierarchical model parameters.

4.8 Model Assessment

In Section 2.2 we use two metrics to compare a family of models, the Bayesian information criteria
(BIC) and the expected log predictive density (ELPD). The BIC is used to compare the in-sample
accuracy of each of the model’s fit to the data using a NUTS sampler, and is given by:

BIC = klog(n) — 2log L, (18)

where

L=p(Y,0" | Q" 0" yo,t) (19)

is the total log-likelihood of all data, Y, over subjects, scans and regions, calculated using the
parameters ©*, 0* and ¢*. Parameters are chosen from the posterior samples collected during
inference as those that maximise the log-likelihood. k is the number combined number of parameters
between ©*, O* and o* (k = 119 for the local and global FKPP models; k£ = 60 for the diffusion
and logistic models); n = 13536 is the total number of observations. .

The ELPD is used for estimating the out-of-sample predictive accuracy and is adapted from
[70]. To do this, we use ATT* subjects who have more than three tau PET scans (N = 10), using
only the first three scans for training and remaining scans to measure predictive accuracy. For our

model, the ELPD is then calculated as:

N

S
ELPD = Z [log (; > p(Y"| @g,yg,t”))] (20)
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where Y are the unobserved data, ©7 = {(p,a)}>_, are posterior samples of model parameters,
y( are subjects initial condition and t" are scan dates, each for n =1... N subjects.

The final method we use for model assessment is the comparison to shuffled data to examine
whether the posterior distributions generated inferred from the true data are due to meaningful tau
signal or statistical properties of the data. We perform this test on the ATT+ and AT™T~ groups
by random spatial shuffling of the data. The same random permutation are applied to the regional
baseline values and carrying capacities. The inference algorithm in Section 4.7 was then applied to
the shuffled dataset and 1000 posterior samples were collected. This process was repeated 10 times

for each group. In the ATT* positive group, one chain failed to converge and was discarded.
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Figure 1: Simulated transport and production dynamics in the local FKPP model. 1la
Simulation from the local FKPP model using carrying capacities derived from Gaussian mixture
models (shown in 1b). Simulations are initialised with a seed value of (S0, + $00;)/2 in the bilateral
entorhinal cortex, i = {27,63}, with p = 0.025/yr and a = 0.25/yr. Each line in the middle
panel represents the SUVR trajectory of one DKT atlas brain region. Values at time points t =
{0,15,30,45} years are projected onto a cortical rendering in the top panel. Each line in the bottom
panel represents concentration averaged over Braak regions, after rescaling simulated SUVR as
gi = (8i — 50i) / (So,i — 50,i)- 1b Two component Gaussian mixture model fit to a multi-cohort tau
PET dataset [24] and data from ADNI for inferior temporal lobe. Baseline values for each region
are taken as the mean of regional T~ distribution and the carrying capacity as the 99-th percentile
of the regional T distribution, and these are used to simulate the model in la and throughout
this paper. 1c Right hemisphere cortical rendering of the SUVR carrying capacities as determined
through Gaussian mixture modelling.
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(b) Out-of-sample model fits.

Figure 2: Model Fit for In-sample and Out-of-Sample Data. 2a Goodness of fit for four
models, local FKPP, global FKPP, diffusion and logistic. For all panels, each point represents a
region in the connectome model, averaged over subjects per scan. Top row shows estimated vs
observed SUVR values. Bottom row shows estimated change vs observed change in SUVR. 2b Out-
of-sample fits for four models of proteopathy. Top row: predicted vs observed out-of-sample SUVR.
Bottom row: predicted change vs observed change from first in-sample scan to last out-of-sample
scan. Each point represents a region in the connectome model, averaged over subjects. Only the
local FKPP and logistic model are able to accurately capture longitudinal changes, while the global
FKPP and diffusion models provide poor forecasts of heterogeneous tau production.
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Figure 3: Out-of-sample fit and posterior predictive plots for the left inferior tempo-
ral cortex. The local FKPP model was iteratively calibrated to a ATT+ ADNI cohort with 41
in-sample subjects and 16 test subjects. Three iteration were run where for each iteration an ad-
ditional scan from the test subjects were included, starting with a single scan. Posterior predictive
trajectories for left inferior temporal lobe are shown for each iteration. In the above figure, each
panel represents each of the 16 test subjects. Each point represents a data point added for training
iteration; trajectories are color matched to correspond to the number of longitudinal data points
included for training.
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Figure 4: Inferred population level parameters using ADNI and BF2 tau data. 4a &
4b Population production and transport parameters across ATT+, ATT~ and A~T~ groups for
ADNI (4a) and BF2 (4b) tau PET data. 4c & 4d Inferred population production and transport
parameters from spatially shuffled data (shown in grey) compare to inferred distributions from true
data for ATTT (4c), ATT~ (4d) ADNI groups. Asterisks between groups denotes distributions are

significantly different (p < 0.01), tested using the Mann-Whitney U test.
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S1 Supplementary Information

S1.1 Residual Analysis Of Local Fkpp And Logistic Models
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Figure S1: Residual analysis for in-sample model fit. Regional residual averaged over subjects
in the ATT* cohort, showing the regionally averaged difference between the SUVR of final scans
and the corresponding prediction using the local FKPP, global FKPP and logistic models. Black
dashed line represents the mean error averaged over subjects and regions. Blue solid line highlights
ZEro error.






S1.2 Regional Forecasting of Tau SUVR
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Figure S2: Out-of-sample fit and posterior predictive plots for the left inferior tempo-
ral region. The local FKPP model was iteratively calibrated to a A™T+ ADNI cohort with 41
in-sample subjects and 16 test subjects. Three iteration were run where for each iteration an ad-
ditional scan from the test subjects were included, starting with a single scan. Posterior predictive
trajectories for left inferior temporal lobe are shown for each iteration (neglecting observation noise).
In the above figure, each panel represents one of the 16 test subjects. Each point represents a data
point added for a training iteration; trajectories are color matched to correspond to the number of
longitudinal data points included for training.
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Figure S3: Out-of-sample fit and posterior predictive plots for the left entorhinal cortex.
The local FKPP model was iteratively calibrated to a AT™T+ ADNI cohort with 41 in-sample subjects
and 16 test subjects. Three iteration were run where for each iteration an additional scan from the
test subjects were included, starting with a single scan. Posterior predictive trajectories for left
entorhinal cortex are shown for each iteration. In the above figure, each panel represents each of
the 16 test subjects. Each point represents a data point added for training iteration; trajectories
are color matched to correspond to the number of longitudinal data points included for training.
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Figure S4: Out-of-sample fit and posterior predictive plots for the left entorhinal cortex
with the addition of observation noise. The local FKPP model was iteratively calibrated to
a ATTT ADNI cohort with 41 in-sample subjects and 16 test subjects. Three iteration were run
where for each iteration an additional scan from the test subjects were included, starting with a
single scan. Posterior predictive trajectories for left entorhinal cortex are shown for each iteration.
In the above figure, each panel represents each of the 16 test subjects. Each point represents a data
point added for training iteration; trajectories are color matched to correspond to the number of
longitudinal data points included for training.



S1.3 Effects Of Data Processing Choices On Longitudinal Modelling

We reapplied the local FKPP to ADNI data (using methods in Section 4.7) with two different
processing options: (1) partial volume correction and (2) an eroded white matter reference region.
The posterior distributions of this analysis are shown in Fig. S5.

In an effort to explain difference between the changes in the production rate across AD groups
with the eroded white matter, we conducted a further analysis of the longitudinal behviour of both
the eroded white matter and inferior cerebellar reference region. To perform this analysis, we use
preprocessed data from ADNI, for which SUVR values are provided using the inferior cerebellum
reference for both target regions and alternative reference regions, including the eroded white mat-
ter. In Fig. S6a, we show the longitudinal change in SUVR for regions in the DKT atlas, averaged
over subjects, using both the inferior cerebellum and the eroded white matter reference regions.
The use of the eroded white matter reference region eliminates the negative longitudinal changes
observed with the inferior cerebellar reference region for the A™T'~ and A~T~ groups, consistent
with the results of model inference in Fig. S5. We hypothesized that this is due to atrophy-related
effects in the reference region that result in decreasing reference region SUVR. To test this, we con-
duct ed further analysis into the longitudinal behaviour of the different reference regions. First, we
examine longitudinal volume changes in the reference regions for each subject from baseline scans to
final scans, shown in Fig. S6b. The results show that the volume of the inferior cerebellar reference
region is more stable longitudinally than the eroded white matter, which shows greater variability
and is more prone to atrophy. Next, we examined longitudinal changes in reference region SUVR
from baseline to final scan. Since ADNI data are already processed using the inferior cerebellum
reference region, we use the cerebellar gray as a proxy for inferior cerebellar signal. In Fig. S6¢ we
compare the subject-wise longitudinal change in SUVR of the eroded white matter and cerebellar
gray to longitudinal change in medial temporal SUVR (comprising the bilateral entorhinal cortex
and amygdala), where the SUVR is for all regions used is calculated using the inferior cerebellum,
as provided by ADNI. We see that there is a strong positive correlation between longitudinal eroded
white matter SUVR change and MTL SUVR and that decreasing MTL SUVR is associated with
decreases in reference region SUVR. This effect is not observed with the the cerebellar gray region,
which shows negligible longitudinal change. Due to this positive correlation, additional normali-
sation with the eroded white matter reference region would diminish any longitudinal changes in
target regions, such as we see in Fig. S6a. In sum, these analyses show that the eroded white matter
has less stable longitudinal SUVR and volume compared to the inferior cerebellum and its longitu-

dinal SUVR is positively correlated with MTL SUVR, likely resulting in the diminished production



effect observed in the inferred posterior distributions in Fig. S5b.
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Figure S5: Inferred posterior distributions for PVC and EWM ADNI data. S5a. Posterior

distributions from ATT+, ATT~ and A~T~ groups for ADNI data processed using an inferior
cerebellar reference region and with partial volume correction. S5b. Posterior distributions from

AYTH, ATT~ and A~T~ groups using ADNI data processed using the eroded white matter reference

region. Posterior distributions were obtained using Eq. (17) and an identical inference set up to
those presented in Section 4.7. We collected 2000 posterior samples from each gropu; there were
no divergences and samples shows good effective sample size and 0.99 < # < 1.01, indicating

A~

good convergence. Significance between distributions is given by the Mann-Whitney U test with

P <0.01.
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Figure S6: Effects of reference region on longitudinal tau PET. S6a. Longitudinal change
in target regions SUVR from first to last scan in the ATT+, ATT~ and A~T~ ADNI cohorts with
inferior cerebellar and eroded white matter reference regions. Each point represents the longitudinal
change in SUVR for a region in the DKT atlas, averaged over subjects in each cohort. The density
of these changes is shown for each group and reference region, with the median change highlighted
with a black line through the density. S6b. Longitudinal change in reference region volume relative
to baseline scan and normalised by total intracranial volume. Each point represents a subject in
the ADNT cohort. S6c. Longitudinal change in reference region SUVR vs change in MTL (bilateral
amygdala and entorhinal cortex) SUVR per subject in the each of the ADNI cohorts. Each point
represents a subject in each ADNI cohort. All tau PET SUVR values by ADNI are pre-normalised by
the inferior cerebellar reference region, and therefore the all SUVR values for the inferior cerebellum
are equal to one. Therefore, we use the cerebellar gray region to approximate the inferior cerebellar
SUVR. For the cerebellar gray region, eroded white matter and MTL regions, we use the SUVR
values based on the inferior cerebellar reference region to highlight the effect of further normalisation
using a different reference region, namely the eroded white matter.

S1.4 Re-Analysis on Schaefer-200 Atlas

We investigate the role of parcellation and connectome on the results presented in Section 2.4.

We rerun our analysis using the Schaefer-200 atlas provided by the ENIGMA project [41]. The



larger parcellations means individual parcels have more uniform volumes. We expect this to more
accurately detect transport dynamics that may be lost averaging signal over large regions, such
as those in the DKT atlas. We rerun this analysis on the BF-2 dataset, using the same subjects
cohorts used in Section 2.4. First, we estimate regional parameter vectors using Gaussian mixture
modelling, as described in Section 4.5. Excluding regions that are not best captured by a two-
component Gaussian mixture model there are R = 198 regions in total. We re-apply the model
Eq. (17) to the AT+, ATT~ and A~T~ BF-2 groups, collecting 2000 samples using a No-U-Turn

sampler. The population level parameters are shown in Fig. S7.
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Figure S7: Posterior distributions for BF2 and Schaefer atlas. Population-level distributions
for ATTT, ATT~ and A~T~ BF-2 cohorts, using the local FKPP model and the Schaefer-200
atlas. Differences between distributions are tested using a two sample Mann-Whitney U test and
significance p < 0.01 is denoted by .



	Introduction
	Results
	Deriving a generative model of tau dynamics 
	Regional Heterogeneity Is Necessary for Longitudinal Prediction
	Local model forecasts regional tau progression
	Early AD progression is driven by tau transport

	Discussion
	Methods
	Data Processing
	Mathematical Models of proteopathy
	Structural Connectome Modelling
	Local model of Tau Proliferation
	Estimating fixed model parameters
	Probabilistic model
	Inference Algorithm
	Model Assessment

	Supplementary Information
	Residual Analysis Of Local Fkpp And Logistic Models
	Regional Forecasting of Tau SUVR
	Effects Of Data Processing Choices On Longitudinal Modelling
	Re-Analysis on Schaefer-200 Atlas



