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Abstract

Experiments on brain samples under multiaxial loading have shown that human brain
tissue is both extremely soft when compared to other biological tissues and character-
ized by a peculiar elastic response under combined shear and compression/tension:
there is a significant increase in shear stress with increasing axial compression com-
pared to a moderate increase with increasing axial tension. Recent studies have
revealed that many widely used constitutive models for soft biological tissues fail to
capture this characteristic response. Here, guided by experiments of human brain
tissue, we develop a family of modeling approaches that capture the elasticity of brain
tissue under varying simple shear superposed on varying axial stretch by exploiting
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key observations about the behavior of the nonlinear shear modulus, which can be
obtained directly from the experimental data.

Keywords: brain mechanics, hyperelasticity, large deformations, combined loading,
constitutive modeling

What we know to be true and what we believe to be reasonable for one or
another real material serve as our guides in choosing different forms of
constitutive equations. – Clifford Truesdell (1966).

1. Introduction

The study of the mechanical response of biological systems within a continuum
framework relies on constitutive equations relating stresses to strains [17]. In the
absence of a method to derive these constitutive equations from first principles,
phenomenological models are routinely used. In particular, when a system behaves
in the elastic regime, classes of hyperelastic models have been proposed for many
tissues and organs. Ideally, these models are systematically calibrated and validated
on multiaxial loading data [28, 45]. Rather than using brute force and fit data
to arbitrary strain-energy functions, it is well understood that a key element of
constitutive modeling is to consider families of models with desirable properties. For
instance, collagen-rich soft tissues are known to be mostly incompressible and display
strong strain-stiffening response. Therefore, most of the current models for these
tissues start with a functional form that both enforces these particular properties
and is general enough to be adapted for specific systems.

Brain tissue is strikingly different from most soft biological tissues: its microstruc-
ture is not governed by collagen and elastin fibers, which implies that brain typically
lacks the characteristic strain-stiffening behavior of arteries, skeletal and cardiac mus-
cle, or skin [14, 15]. The typical behavior of these tissues, captured by models such as
Fung’s or Gent’s [18], is that a strong stiffening is obtained at finite extension leading
either to a singular limit (in the case of the Gent model) or exponential behavior
(for the Fung model). Data analyses shows that these models are not suitable for
brain tissue [23]. A natural problem is then to understand the defining characteris-
tics of brain tissue and to identify a suitable family of hyperelastic models with these
characteristics. Moreover, a model for brain tissue needs to be suitable for small to
moderate strain as experienced in vivo [1].

The analysis presented in this paper is based on the data of human brain tissues
tested under finite uniaxial and multiaxial loading reported in [4]. In this article,
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the authors have established that the microstructural anisotropy due to the align-
ment of nerve fibers in the tissue does not result in an anisotropic elastic response
similar to the effect of collagen fibers in other soft tissues. Therefore, we neglect a
possible anisotropic response and assume here that brain tissue is isotropic. Another
important consideration is the viscoelastic response of brain tissue. The data shows
clearly that the response of brain tissue has a viscous component indicated by a
different response in loading and unloading. However, in the first instance, we are
interested in the tissue’s effective elastic response under small strain rate. Following
[4], this response is obtained as the average between the loading and the unloading
paths, assuming that this corresponds to the case when the strain rate approaches
zero and the hysteresis vanishes. Therefore, for the rest of our analysis, we restrict
our attention to isotropic elastic models.

In the elastic regime, recent experiments on brain tissues have further estab-
lished another response under combined compression and shear, namely that the
elastic shear stress increases sharply with increasing axial compression, while it only
increases moderately with increasing tension [4, 21, 35, 23]. From a modeling point of
view, capturing this apparently contradictory behavior represents a major challenge.
Similar behaviors were also observed in other soft tissues with large lipid content,
such as adipose tissue [23].

For brain and adipose tissues, Ogden-type hyperelastic incompressible isotropic
models [32] have been found in good agreement with the experimental data, both
in single and multiaxial loading [4, 7, 9, 12, 23, 26, 27, 30, 31, 37, 39, 40, 41],
and the relative errors from their nonlinear least-squares fit to the experimental data
suggest that the models with higher order terms are more successful in approximating
the data than the ones with lower order terms. However, even though Ogden-type
constitutive models are widely appealing since they are readily implemented in many
popular software packages, the fact that a relatively large number of parameters
may be required to approximate the data to the desired accuracy makes them less
attractive to users.

Here, our objective is to build a family of isotropic hyperelastic strain-energy
functions, with a small number of parameters, that exhibit the characteristic behav-
ior under combined shear and compression or tension. To achieve this, we devise a
systematic strategy to derive such models and demonstrate their performance on ex-
perimental data for human brain tissue from [4]. Our algorithmic approach is generic
and, as such, applicable to other biological tissues with similar properties, including
adipose tissue. We start our analysis in Section 2, with a detailed study of the defor-
mation of a cuboid of isotropic hyperelastic material under simple shear superposed
on finite axial stretch. This analysis reveals the crucial role of the nonlinear shear
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modulus defined as the ratio between the shear stress and the shear strain. Unlike the
linear shear modulus which is a constant, in general, the nonlinear shear modulus is a
function of the deformation that enables us to identify characteristic behaviors under
large shear superposed on large compression or tension. In Section 3, we show that,
for a given shear superposed on finite compression or tension, the elastic behavior
under large shear is consistent with that under small shear. This observation is used
to identify a generic strain-energy function capable of predicting the physical behav-
ior of human brain tissues subjected to combined shear and tension or compression.
In Sections 4 and 5, we exploit our key observations from the experimental data and
employ the nonlinear shear modulus to derive a family of hyperelastic models with
a small number of parameters that predict the elastic behavior of brain tissue under
combined shear and axial loading and are suitable for finite-element analyses.

2. Finite shear superposed on axial stretch

The finite elastic deformation of a material body is described by the mapping x =
χ(X), which defines a one-to-one correspondence between the positions of material
points in the reference configuration X = (X, Y, Z) ∈ B0 and their positions in the
current configuration x = (x, y, z) ∈ B. Kinematics quantities for the deformation
[2, 46] are associated with the deformation gradient

F = Gradχ. (1)

Here, we restrict our attention to hyperelastic isotropic materials. These materials
are described by a strain-energy function W(λ1, λ2, λ3), where {λi}i=1,2,3 are the
principal stretches [33, p. 94]. We assume that the material is incompressible so that
J =detF = λ1λ2λ3 = 1. Then, the Cauchy stress tensor has the representation:

σ = −pI + β1B + β−1B−1, (2)

where I is the identity tensor, B = F · FT is the left Cauchy-Green tensor, p is the
Lagrange multiplier associated with the incompressibility constraint J = 1, and

β1 =
1

λ21 − λ22

(
λ21 + λ23
λ1

∂W
∂λ1
− λ22 + λ23

λ2

∂W
∂λ2

)
,

β−1 =
1

λ21 − λ22

(
1

λ1

∂W
∂λ1
− 1

λ2

∂W
∂λ2

)
,

(3)

are the constitutive coefficients.
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Figure 1: Cuboid (left) deformed by simple shear superposed on axial stretch (right).

We consider an elastic cuboid deformed by simple shear superposed on axial
stretch. This idealized deformation has been first proposed by Rajagopal and Wine-
man [38] and used both to study the Poynting effect and to fit experimental data
[4, 10, 23, 24, 25]. In Cartesian coordinates, it reads

x =
X√
a

+ kaY, y = aY, z =
Z√
a
, (4)

where (X, Y, Z) and (x, y, z) are the coordinates of the reference and current config-
urations, respectively (see Figure 1). The deformation gradient for this deformation
is

[F] =

 1/
√
a ka 0

0 a 0
0 0 1/

√
a

 , (5)

where a > 0 is the (constant) axial stretch, (a − 1) is the axial strain, k > 0 is the
shear parameter, and ka > 0 is the shear strain.

The corresponding left Cauchy-Green deformation tensor takes the form

[B] =

 1/a+ k2a2 ka2 0
ka2 a2 0
0 0 1/a

 , (6)
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with the eigenvalues

λ21 =
1 + a3 (1 + k2) +

√
[1 + a3 (1 + k2)]2 − 4a3

2a
= λ2,

λ22 =
1 + a3 (1 + k2)−

√
[1 + a3 (1 + k2)]2 − 4a3

2a
= aλ−2,

λ23 =
1

a
.

(7)

The principal invariants of the tensor B in (6) are

I1 = tr (B) = a2
(
1 + k2

)
+

2

a
= λ21 + λ22 + λ23,

I2 =
1

2

[
(tr B)2 − tr

(
B2
)]

= a
(
2 + k2

)
+

1

a2
= λ21λ

2
2 + λ22λ

2
3 + λ23λ

2
1,

I3 = det B = 1 = λ21λ
2
2λ

2
3.

(8)

We note that we can rewrite the second invariant as I2 = λ−21 + λ−22 + λ−23 . The
non-zero components of the associated Cauchy stress (2) are

σxx = σzz + β1k
2a2,

σyy = σzz +

(
a2 − 1

a

)(
β1 −

β−1
a

)
+ β−1k

2a,

σzz = −p+
β1
a

+ aβ−1,

σxy = ka2
(
β1 −

β−1
a

)
,

(9)

and the principal stresses are given by [46, p. 143]

σi = λi
∂W
∂λi
− p, i = 1, 2, 3. (10)

A convenient way to quantify the shear response of a material under shear stress is
to introduce the following nonlinear shear modulus [46, p. 174-175]

µ =
σ1 − σ2
λ21 − λ22

=
1

λ21 − λ22

(
λ1
∂W
∂λ1
− λ2

∂W
∂λ2

)
. (11)

This modulus is a function of the deformation. In our case, it can be parametrized in
terms of the axial stretch a and the shear parameter k as µ = µ(a, k). Equivalently,
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the nonlinear shear modulus can be written in terms of the constitutive coefficients,
using (3), as

µ(a, k) = β1 −
β−1
a
. (12)

It is easier in experiments to measure the components of the first Piola-Kirchhoff
stress defined as the force per unit area in the reference configuration [46, pp. 124-
125]

P = (detF)σ · F−T. (13)

Since the shear component of the first Piola-Kirchhoff stress tensor Pxy = σxy a is
proportional to the shear strain ka, the nonlinear shear modulus (11), or equivalently
(12), is simply the ratio between the elastic shear stress Pxy and the shear strain ka,
i.e.,

µ(a, k) =
σxy
ka2

=
Pxy
ka

. (14)

Hence the nonlinear shear modulus defined here can be obtained directly from the
experimental measurements.

There are two interesting limits of the nonlinear shear modulus. First, when the
axial stretch a is finite and the shear strain is small, i.e., for infinitesimal simple shear
superposed on finite axial stretch, the nonlinear shear modulus (11) converges to

µ̃(a) = lim
k→0

µ(a, k). (15)

Second, in the linear elastic limit, the nonlinear shear modulus (11) converges to the
well-known linear shear modulus µ0 of the infinitesimal theory,

µ0 = lim
a→1

(
lim
k→0

µ(a, k)
)

= lim
a→1

µ̃(a). (16)

3. Modeling strategy

Our objective is to identify a strain-energy function that can predict the phys-
ical behavior of human brain tissues subjected to combined shear and tension or
compression. The experimental setup is described in detail in [4] and summarized
in Appendix A, and the deformation attained is idealised by the homogeneous de-
formation (4). Note that obtaining ideal homogeneous deformations with very soft
samples is known to be challenging as ideal frictionless boundary conditions are dif-
ficult to achieve and barelling may occur in compression. However, it remains our
main theoretical tool in an attempt to organise the data. Accordingly, for a fixed
axial stretch a and shear parameter k, we measure the shear component Pxy of the
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first Piola-Kirchhoff stress tensor and calculate the corresponding nonlinear shear
modulus µ using equation (14).

Figure 2 summarizes the nonlinear shear modulus µ(a, k) extracted from the
experimental data for human brain tissue tested under multiaxial loading conditions
[4] (see Appendix A). Two interesting characteristics emerge from these figures.
First, in Figure 2A, we observe that the variation of the nonlinear shear modulus
with respect to the shear parameter is similar for different values of fixed stretches,
up to global vertical shift. Indeed, the different curves have the same qualitative
characteristics shape. Second, in Figure 2B, we observe that, under large compressive
loading, the nonlinear shear modulus increases sharply and almost linearly as the
stretch parameter 0 < a < 1 decreases, while under tension, the nonlinear shear
modulus remains almost constant or increases moderately as the parameter a > 1
increases. Strikingly, although this behavior was observed before for small shear
[21, 23, 35], here we see that the behavior of the nonlinear shear modulus with
respect to the stretch at finite fixed shear is similar to that under small shear.
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Figure 2: Nonlinear shear modulus given by the experimental measurements for brain tissue (A)
under simple shear superposed on axial tension or compression, and (B) under varying compression
and tension levels evaluated at different levels of shear. As the experiments suggest, the nonlinear
shear modulus at any fixed shear increases significantly with increasing compression and remains
almost constant or increases moderately with increasing tension. Here and in all the following
figures the axial strain is (a− 1).
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3.1. Preliminary considerations
Our modeling strategy can accommodate various forms of strain-energy func-

tions. Here, we consider the following Ogden-type model [32], which will be useful in
predicting the characteristic elastic behavior under simple shear superposed on finite
axial stretch,

Wog(λ1, λ2, λ3) =
c0(a)

2α(a)

(
λ
2α(a)
1 + λ

2α(a)
2 + λ

2α(a)
3 − 3

)
. (17)

We know from [4] and [23] that Ogden models can capture the qualitative trend
reported above. Indeed, for each prescribed stretch a, the particular model (17) cap-
tures our experimental data well if c0(a) and α(a) change with the stretch parameter
a [4] (see Appendix B). For fixed a, the corresponding principal stresses take on the
form

σi = c0(a)λ
2α(a)
i − p, i = 1, 2, 3. (18)

Then the nonlinear shear modulus (11) simplifies to

µ(a, k) = c0(a)
λ
2α(a)
1 − λ2α(a)2

λ21 − λ22
. (19)

When the shear strain is small, the nonlinear shear modulus (23) converges to

µ̃(a) = lim
k→0

µ(a, k) = c0(a)
a1−α(a)(1− a3α(a))

1− a3
. (20)

In the linear elastic limit, this modulus becomes

µ0 = lim
a→1

µ̃(a) = c0(1)α(1). (21)

However, a constitutive model of the form (17) fails to simultaneously capture the
constitutive response of brain tissue at different stretch levels when using the cali-
bration approach tested in [4] (see Appendix B). This suggests that either a different
calibration strategy is required or a different constitutive model should be consider.
We consider both approaches next. First, we develop a different calibration strategy.
Second, we consider constitutive models with more parameters.

4. One-term (two-parameter) constitutive model

As shown in Figure 2, for a given shear superposed on varying levels of tension and
compression, the changes in the nonlinear shear modulus under large shear computed
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from the experimental data are consistent with those under small shear. In particular,
this modulus increase sharply in compression as 0 < a < 1 decreases, and remains
almost constant or increase moderately in tension as a > 1 increases. Theoretically,
we notice that, since in (17), the parameters c0(a) and α(a) depend only on the
stretch a, constant values for these parameters can be obtained by calibrating to
the corresponding experimental results the nonlinear shear modulus for small shear
superposed on varying axial stretches a (20). Once the model parameters are found,
they can be used to predict the nonlinear shear modulus (19), and hence the elastic
behavior under large shear superposed on different axial deformations.

To obtain a hyperelastic model that captures the observed behavior of human
brain tissue while keeping the number of model parameters low, we consider the
one-term (two-parameter) Ogden model (17) with the strain-energy function

W0(λ1, λ2, λ3) =
c0
2α

(
λ2α1 + λ2α2 + λ2α3 − 3

)
, (22)

where c0 and α are constant parameters independent of the stretch value a. These
model parameters can be found from the experimental data of human brain tissue
under small shear superposed on varying axial stretches a, as in [23]. Then the
constitutive model (22) can be deformed by finite simple shear or by simple shear
superposed on any finite axial stretch (4) with the shear parameter k and axial
stretch a. In this case, c0 and α are fixed material parameters, and the nonlinear
shear modulus (19), the nonlinear shear modulus under small shear strain (20), and
their linear elastic limit (21) take on the following explicit forms:

µ(a, k) = c0
λ2α1 − λ2α2
λ21 − λ22

, (23)

µ̃(a) = lim
k→0

µ(a, k) = c0
a1−α (1− a3α)

1− a3
, (24)

µ0 = lim
a→1

µ̃(a) = c0α. (25)

4.1. Model calibration
In this section, we devise a two-step procedure to calibrate the strain-energy

function (22) to the human brain experiments. The only experimental measurements
that we require for the model calibration correspond to the nonlinear shear modulus
for small shear superposed on varying axial deformations. To calibrate the constant
parameters to the experimental data, we employ a nonlinear least squares procedure
in Matlab, lsqnonlin.m [4, 23, 34]. We then compare the predicted results with
experimental data for finite simple shear superposed on axial tension or compression.
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Step 1. (preliminary approximation of experimental data) First, we consider the
experimental data for simple shear, up to 20%, and for simple shear superposed on
any fixed axial stretch, up to 25% tension or compression (in 5% increments), and
note that the available data are highly reliable at more than 5% shear, but contain
some noise in the low shear range, at less than 5% in magnitude. To identify more
reliable values everywhere, we calibrate the strain-energy function Wog of equation
(17) to the experimental data for fixed axial stretch and finite simple shear by varying
the parameters c0(a) and α(a) with the stretch parameter a. We can calibrate this
model using the experimental data of human brain tissue for shear stress under simple
shear superposed on a fixed axial stretch.

In Appendix B, we summarize the constitutive behavior of the calibrated model,
which shows excellent agreement with the experimental results at more than 5%
shear and offers reliable predictions of the elastic behavior at less than 5% shear. In
particular, for each axial stretch a, the nonlinear shear modulus under small shear
µ̃(a) is given by (20) and the predicted values are denoted by µ̃data(a). In the linear
elastic limit, the shear modulus (21) is equal to µ0 = 0.3379 kPa.

Step 2. (constitutive model calibration) Second, in order to accurately capture the
behavior of the nonlinear shear modulus at different values of the axial stretch, we
consider the hyperelastic model characterized by the strain-energy function W0 of
equation (22). For this model, we calibrate the nonlinear shear modulus µ̃(a) of
equation (24) for small shear superposed on varying axial deformations, up to 25%
tension or compression (in 5% increments), to the corresponding values identified
from the experimental data at Step 1, µ̃data(a), and obtain the constant parameters
c0 = −0.0939 kPa and α = −4.0250. This calibration is illustrated in Figure 3
together with the associated relative error |Pmodel

xy −P data
xy |/|P data

xy |, where Pmodel
xy and

P data
xy are the predicted and measured values of the shear stress, respectively, and | · |

denotes the absolute value.
According to equation (25), the calibrated model predicts a linear shear modulus

of µ0 = c0α = 0.3779 kPa and a Young’s modulus of E0 = 3µ0 = 1.1338 kPa, i.e.,
this model offers a very good approximation in the linear elastic regime, where a
linear shear modulus µ0 = 0.3379 kPa was identified from the experimental data at
Step 1 (see Appendix B). This is to be expected, since the model was calibrated to
data for small shear deformations (Figure 3). For comparison, a similar one-term
(two-parameter) Ogden strain-energy function but a different calibration method,
was used in [4], and a shear modulus of µ0 = 0.66 kPa was found, but it was also
noted that this value overestimates the stiffness under the linear elastic regime.

Table 1 summarizes the strain-energy function for the proposed model, its con-
stant parameters, their calibrated values, and units. Figure 4 shows the predicted
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Figure 3: Constitutive behavior of strain-energy function W0 = c0

(
λ2α1 + λ2α2 + λ2α3 − 3

)
/(2α)

with parameters c0 = −0.0939 kPa and α = −4.0250 under small shear superposed on varying axial
tension or compression: (A) nonlinear shear modulus µ̃ versus axial strain, given data and model,
and (B) associated relative error for the shear stress Pxy.

Table 1: Strain-energy function with related model parameters and calibrated values (and units)
for human brain tissues.

strain-energy function eq. model parameter value unit

W0 (22) Ogden c0 -0.0939 kPa
α -4.0250 –

linear elastic limit (25) – µ0 0.3779 kPa
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shear stress Pxy and nonlinear shear modulus µ compared to the experimental data
for simple shear, up to 20% shear strain, superposed on up to 25% compression or
tension (in 5% increments), and the relative errors.

Remark 1. In the above calibration procedure, the preliminary Step 1, where reliable
data for the nonlinear shear modulus under small shear deformations are identified, is
performed only because the given experimental data are noisy in the small shear range,
and more reliable values are required for the model calibration at Step 2. If reliable
experimental data for the small shear deformations were provided directly, then Step
1 would not be necessary. At Step 2, the choice of the strain-energy function W0

is not restricted to the particular form suggested here, but our present choice was
guided by the fact that we wanted to keep the number of constant model parameters
low. Moreover, although the approximation under small shear superposed on varying
axial stretch in Figure 3 can be improved, as shown in Appendix C, under large shear
deformations, the results remain similar. This is due to the fact that, as shown in
Figure 2B, if compression increases, then the nonlinear elastic modulus increases
slower under larger shear, but if tension increases, then the rate of increase in this
modulus remains virtually the same for different levels of shear.

5. Three-term (four-parameter) constitutive model

In this section, we construct a strain-energy function that matches the observed
behaviors of human brain tissue under simple shear superposed on finite axial stretch
by combining the Mooney-Rivlin model [29, 42]

Wmr(λ1, λ2, λ3) =
c1
2

(
λ21 + λ22 + λ23 − 3

)
+
c2
2

(
λ−21 + λ−22 + λ−23 − 3

)
, (26)

where c1 and c2 are two constant parameters, with the one-term Ogden model (17).
The Mooney-Rivlin model has the property that its nonlinear shear modulus depends
only on a, i.e.,

µ(a, k) = µ̃(a) = c1 +
c2
a
. (27)

Moreover, for this model, suitable values for the constant parameters can be found
such that the nonlinear shear modulus increases linearly as the stretch parameter
0 < a < 1 decreases, and remains almost constant as the parameter a > 1 increases,
as shown in [23]. These particular characteristics of the Mooney-Rivlin model will
be useful when approximating the stress-strain curves in Figure 2A, which are only
translated vertically while their shape appears is almost invariant under variations
of the stretch values a. To construct the strain-energy function for the constitutive
model, we devise the following three-step procedure:
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Figure 4: Constitutive behavior of strain-energy functionW0 = c0
(
λ2α1 + λ2α2 + λ2α3 − 3

)
/(2α) with

parameters c0 = −0.0939 kPa and α = −4.0250 under simple shear superposed on different levels of
axial tension or compression: (A) Shear stress Pxy versus shear strain, experiment and model, (B)
nonlinear shear modulus µ versus axial strain, experiment and model, and (C) associated relative
error for the shear stress Pxy. The corresponding linear shear modulus is µ0 = 0.3779 kPa.
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Step 1. We begin with a three-term (four-parameter) Ogden model by additively
combining the strain-energy functions (17) and (26),

W1(λ1, λ2, λ3) =
c0
2α

(
λ2α1 + λ2α2 + λ2α3 − 3

)
+
c1
2

(
λ21 + λ22 + λ23 − 3

)
+
c2
2

(
λ−21 + λ−22 + λ−23 − 3

)
,

(28)

where c0, α, c1, and c2 are constant material parameters. To calibrate this model, we
use the experimental data of human brain tissue for shear stress under simple shear
superposed on a fixed axial stretch, as in [4], i.e., by fixing a in the deformation
gradient (5). Then the constitutive model (28) can be deformed by simple shear or
by simple shear superposed on any axial stretch (4) with the shear parameter k and
axial stretch a. Since c0, α, c1, and c2 are fixed material parameters, the nonlinear
shear modulus (11) and the nonlinear shear modulus under small shear strain (15)
take on the following explicit forms

µ1(a, k) = c0
λ2α1 − λ2α2
λ21 − λ22

+ c1 +
c2
a
, (29)

µ̃1(a) = lim
k→0

µ1(a, k) = c0
a1−α (1− a3α)

1− a3
+ c1 +

c2
a
. (30)

Step 2. Next, in order to approximate the nonlinear shear modulus at different values
of the axial stretch while preserving the changes with shear from the previous step
(as shown in Figure 2A), we augment the strain-energy function W1 of (28) by a
correction function W2 to obtain an isotropic hyperelastic model of the form

W(λ1, λ2, λ3) =W1(λ1, λ2, λ3) +W2(λ1, λ2, λ3). (31)

For the hyperelastic model (31), the nonlinear shear modulus (11) is simply the sum
of the nonlinear shear moduli of both functions, i.e.,

µ =
1

λ21 − λ22

(
λ1
∂W
∂λ1
− λ2

∂W
∂λ2

)
= µ1 + µ2. (32)

where µ1 is the nonlinear shear modulus (29) of the strain-energy function W1,
given by (28), and µ2 is the nonlinear shear modulus of the correction function W2

which needs to be determined. Motivated by our experimental observations, the
nonlinear shear modulus µ given by (32) must increase sharply in compression as
0 < a < 1 decreases, and remain almost constant or increase moderately in tension
as a > 1 increases (see Figure 2). To satisfy these conditions, we look for a nonlinear

15



shear modulus correction µ2(a, k) = µ̃2(a), varying only with the stretch parameter
a. Since the Mooney-Rivlin model is the only prominent model that satisfies this
condition, we consider

W2(λ1, λ2, λ3) =
b1
2

(
λ21 + λ22 + λ23 − 3

)
+
b2
2

(
λ−21 + λ−22 + λ−23 − 3

)
, (33)

with the nonlinear shear modulus

µ2 = b1 +
b2
a
. (34)

In terms of the nonlinear shear modulus of the functions W1 and W2, we have

µ2 = µ̃(a)− µ̃1(a), (35)

where µ̃1(a) is given by (30) and µ̃(a) = limk→0 µ, with µ defined by (32). Therefore,
the constants b1 and b2 can be found by calibrating (34) to the known values µ̃data(a)−
µ̃1(a), where µ̃data(a) are the values of the nonlinear shear modulus at small shear
strain identified from the experimental data as shown in Appendix B.

Step 3. The resulting hyperelastic model (31) then consists of the free energy function
W1 and the correction function W2. The final model takes on the form

W(λ1, λ2, λ3) =
c0
2α

(
λ2α1 + λ2α2 + λ2α3 − 3

)
+
c1
2

(
λ21 + λ22 + λ23 − 3

)
+
c2
2

(
λ−21 + λ−22 + λ−23 − 3

)
,

(36)

in terms of four global parameters. The corresponding nonlinear shear modulus (11),
the nonlinear shear modulus under small shear strain (15), and their linear elastic
limit (16) are, respectively,

µ(a, k) = c0
λ2α1 − λ2α2
λ21 − λ22

+ +c1 +
c2
a
, (37)

µ̃(a) = lim
k→0

µ(a, k) = c0
a1−α (1− a3α)

1− a3
+ c1 +

c2
a
, (38)

µ0 = lim
a→1

µ̃(a) = c0α + c1 + c2. (39)
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5.1. Model calibration
Next, we calibrate the model (36) to the human brain experiments (see Appendix

A). At Step 1, the only experimental measurement we need to calibrate the model
is the shear stress under simple shear superposed on a chosen axial stretch (see Ap-
pendix B). At Step 2, we require the nonlinear shear modulus under small shear
superposed on varying compression or tension deformations. We then compare the
predicted results for the shear stress and nonlinear shear modulus with experimental
data for simple shear superposed on different axial deformations.
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Figure 5: Constitutive behavior of strain-energy function W1 under simple shear superposed on
25% axial tension, in Step 1: (A) Shear stress Pxy versus shear strain, experiment and model with
parameters c0 = 0.0653 kPa, α = 7.1813, c1 = −0.2302 kPa, and c2 = −1.9842 kPa, and (B)
nonlinear shear modulus µ1 versus shear strain, experiment and model.

Step 1. (constitutive model initial calibration) First, we consider the experimental
data for simple shear, up to 20%, superposed on 25% tension. Note that, in Figure 2,
the nonlinear shear modulus at 25% tension is almost equal to that under simple
shear. In Figure 5A, we calibrate the shear stress for the model W1 in (28) to these
data and obtain c0 = 0.0653 kPa, α = 7.1813, c1 = −0.2302 kPa, and c2 = −1.9842
kPa. In Figure 5B, the associated nonlinear shear modulus µ1 of equation (29) is
compared to the nonlinear shear modulus computed from the experimental data.

Step 2. (calibration correction) Second, from each experimental data set for the
shear stress at different axial deformations, up to 25% compression or tension (in
5% increments), we evaluate the function (28) and its nonlinear shear modulus (30)
and identify the nonlinear shear modulus values µ̃data(a) at small shear as explained
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Figure 6: Constitutive behavior of strain-energy function W2 in Step 2: Nonlinear shear mod-
ulus correction µ2 versus compression or tension, experiment and model with parameters b1 =
−3.5899 kPa and b2 = 5.5218 kPa.

in Appendix B. We then calibrate the nonlinear shear modulus correction µ2 of
equation (34) to the known values µ̃data(a)− µ̃1(a), where µ̃1(a) is given by equation
(30), and obtain b1 = −3.5899 kPa and b2 = 5.5218 kPa, as shown in Figure 6.

Step 3. (constitutive model) The final hyperelastic model is then given by the strain-
energy functionW =W1+W2 of equation (36), i.e., the sum of the two models, with
parameter values of c0 = 0.0653 kPa, α = 7.1813, c1 = c1 + b1 = −3.8201 kPa, and
c2 = c2 + b2 = 3.5376 kPa. According to equation (39), the proposed model predicts
a linear shear modulus of µ0 = c0α + c1 + c2 = 0.1864 kPa, which corresponds to a
Young’s modulus of E0 = 3µ0 = 0.5593 kPa. This estimate for the shear modulus is
lower than the one obtained in Appendix B.

Table 2 summarizes the three steps, with the corresponding strain-energy func-
tions, model parameters, calibrated values, and units. Figure 7 compares the pre-
dicted shear stress Pxy and nonlinear shear modulus µ with the experimental data
for simple shear, up to 20% shear strain, superposed on up to 15% compression
or tension (in 5% increments), and shows the relative errors. At large shear strains,
close to 20%, the relative errors in Figure 7C are comparable with those in Figure 4C.

Remark 2. Note that the overall model constructed here contains three terms with
four parameters c0 = 0.0653 kPa, α = 7.1813, c1 = −3.8201, c2 = 3.5376, i.e., only
four parameters are needed for the finite element implementation of this model.
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Figure 7: Constitutive behavior of strain-energy function W with c0 = 0.0653 kPa, α = 7.1813,
c1 = −3.8201 kPa, and c2 = 3.5376 kPa under simple shear superposed on different levels of
axial tension or compression: (A) Shear stress Pxy versus shear strain, experiment and model, (B)
nonlinear shear modulus µ versus axial strain, experiment and model, and (C) associated relative
error for the shear stress Pxy. The corresponding linear shear modulus is µ0 = 0.1864 kPa.
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Table 2: Strain-energy functions with related model parameters and calibrated values (and units)
for human brain tissues.

step strain energy eq. model parameter value unit

Step 1 W1 (28) Ogden c0 0.0653 kPa
α 7.1813 –
c1 -0.2302 kPa
c2 -1.9842 kPa

Step 2 W2 (33) Mooney-Rivlin b1 -3.5899 kPa
b2 5.5218 kPa

Step 3 W =W1 +W2 (36) Ogden c0 0.0653 kPa
α 7.1813 –
c1 -3.8201 kPa
c2 3.5376 kPa

- - (39) linear elastic limit µ0 0.1864 kPa

6. Discussion

Understanding the constitutive behavior of human brain tissue is critically im-
portant to study its mechanical function, to evaluate the stresses that cannot be
measured in vivo, and to predict its response to physiological and pathological load-
ing. In spite of extensive research, we only now begin to understand that brain tissue
belongs to a special class of soft tissues with unique and distinct constitutive proper-
ties. We typically associate soft tissues with a constitutive behavior that is primarily
driven by the microstructure of their extracellular matrix with load bearing fibers
of collagen and elastin. There is a general agreement to model this type of behav-
ior with a strain-energy function supplemented by a strain-stiffening term that acts
along the fiber direction. Probably the most prominent representative of this class of
models is the Holzapfel-Gasser-Ogden model [16], which is widely used to model var-
ious soft tissues including arteries, heart valve, cardiac muscle, ocular tissue. While
earlier attempts have simply adapted this model to simulate brain tissue [6], recent
studies suggest that brain tissues behave inherently differently (see Appendix B). In
particular, when brain tissue is subject to large strains, the shear modulus increases
significantly under axial compression, but not under tension.

Experimental studies of human brain tissue have found that, in general, its be-
havior can reasonably be approximated by an Ogden-type model for nonlinear, in-
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compressible, isotropic, rubber-like materials. Ogden models [32] are widely used and
are appealing for many reasons, not least because they are readily available in many
commercial software packages. In fact, the Ogden model outperforms many other
commonly used models including the Neo-Hookean, Mooney-Rivlin, Fung, and Gent
models when modeling human [4] and murine [23] brain tissue and fat under multiax-
ial loading. Our recent studies further reveal that, under combined finite shear and
axial deformation, human brain tissue displays a pronounced tension-compression
asymmetry, which manifests though a significant increase in shear stress with in-
creasing axial compression compared to a moderate increase with increasing axial
tension [4]. Similarly, in murine brain tissue under small shear, the nonlinear shear
modulus increases with increasing axial compression but remains almost constant
with increasing axial tension [23, 35]. By neglecting time-dependent material ef-
fects, such as viscoelasticity [43] or poroelasticity [12], and focusing exclusively on
the quasi-time-independent elastic behavior, in [4], it is shown that, at fixed axial
stretch, the one-term Ogden model performs well and captures accurately the varia-
tion of stress with respect to large shear. However, as axial stretch is varied, the two
parameters change considerably. Hence, either a different model or a different cali-
bration strategy is required under multiaxial loading. The experimental data shows
that, for a given shear superposed on varying levels of tension and compression, the
changes in the nonlinear shear modulus under large shear are qualitatively similar to
those under small shear. Furthermore, in view of the many typical difficulties which
arise from the numerical least-squares approximation of large experimental data sets,
such as non-uniqueness of approximate feasible solution and strong dependency of
the optimal solutions on initialization [34], our key observations about the particu-
lar behavior of the nonlinear shear modulus are essential in finding suitable model
solutions.

Our first model consists of one Ogden-term with two parameters which are derived
by a different calibration strategy than the one tested in [4]. Specifically, to find the
two model parameters, we first identify reliable data for the nonlinear shear modulus
under small shear deformations from our experimental measurements, then calibrate
to these values the nonlinear shear modulus of the hyperelastic model under small
shear superposed on varying axial tension or compression. We emphasize here that
the preliminary step whereby we identify reliable data for the small shear range is
only required because the available data are particularly noisy in that range. When
reliable experimental data are provided directly, this preliminary step is not needed.
In the linear elastic limit, the model parameters define a linear shear modulus of
µ0 = 0.3779 kPa, and, under the assumption of incompressibility, a Young’s modulus
of E0 = 1.1338 kPa. The results predicted by this model are in very good agreement
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with all the given experimental data for simple shear superposed on different level
of axial tension or compression simultaneously, especially in the small shear regime
and in the linear elastic limit. However, under large shear deformations, the results
are less accurate, since, as suggested by the experimental data, when compression
increases, the nonlinear elastic modulus increases slower under larger shear, but when
tension increases, the rate of increase in this modulus remains virtually the same for
different levels of shear.

We also construct a three-term (four-parameter) Ogden-type model by systemat-
ically exploiting key findings from the available experimental data. Specifically, the
multiaxial loading tests reveal that (i) the elastic response of brain tissue under vary-
ing shear superposed on different levels of tension and compression is qualitatively
similar to the response under simple shear, and (ii) for a given shear superposed
on varying levels of tension and compression, the elastic behavior under large shear
is consistent with that under small shear. To capture these unique characteristics,
we devise a three-step approach. First, we define a strain-energy function W1 and
introduce its nonlinear shear modulus µ1, which is a function of the deformation and
represents the ratio between the shear stress and the shear. We calibrate the model
parameters from the experimental data at finite deformation. Second, we correct
the model by a second strain-energy function W2 of Mooney-Rivlin-type with the
nonlinear shear modulus µ2 and calibrate the model parameters at the small shear
strain limit. Third, we add both models to obtain the overall strain-energy function
W =W1 +W2. To formalize the procedure by which we identify our parameters, we
use experimental measurements for the shear stress under simple shear superposed
on a chosen axial stretch and for the shear modulus under small shear superposed on
varying axial tension or compression. In the linear limit, these parameters define a
linear shear modulus of µ0 = 0.1864 kPa, and, under the assumption of incompress-
ibility, a Young’s modulus of E0 = 0.5593 kPa. With this parametrization, our model
is capable of predicting the elastic behavior of human brain tissue under combined
multiaxial loading.

Our proposed models are the only hyperelastic models to date calibrated simulta-
neously to experimental data for brain tissue under finite simple shear superposed on
varying axial tension or compression. With the advantage of a robust and systematic
parameter identification, the hyperelastic models proposed here may be generalized
to other soft, lipid-rich biological tissues with similar constitutive features, including
liver or adipose tissue. Critically, our modeling techniques highlight the central role
played by the nonlinear shear modulus to explain tissue behavior in large deforma-
tions.

22



Appendix A. Biomechanical testing

To characterize the mechanical response of human brain tissue under multiaxial
loading, we extracted a total of four specimens of 5 × 5 × 5mm3 from the corona
radiata, the outer white matter, of three human cadavers obtained during autopsy
from the local health authorities with a post mortem interval of less than 24 hours.
Directly after autopsy, we cut one exemplary fresh tissue slice of each human brain
for biomechanical testing and comparison. The study was approved by the Ethics
Commission of the Medical University of Graz, Austria, with the approval num-
ber 25-420 ex 12/13. We kept the tissue refrigerated at 3◦C and humidified with
phosphate-buffered saline solution at all times to minimize tissue degradation. We
tested all samples within 48 hours after subject acquisition. This resulted in a total
post-mortem interval between death and the end of biomechanical testing of less than
60 hours. Note that the post-mortem time of up to 60 hours after death could poten-
tially affect brain tissue properties. While studies on porcine brain tissue revealed
a slight increase in tissue stiffness beginning 6 hours post-mortem [13], other exper-
iments on bovine brain tissue showed no change in tissue stiffness between 2 hours
and 5 days post mortem [3]. Within the time window between the first and last sam-
ple tested, we could not observe a notable change in tissue stiffness. We mounted
each specimen onto the custom-designed triaxial testing device [45] to apply com-
bined shear and compression or tension loadings. The system operates with a stroke
resolution of 0.04µm in the y-direction and with a stroke resolution of 0.25µm in the
x- and z-directions. We achieved motor control and data acquisition using the soft-
ware testXpert II Version 3.2 (Zwick/Roell GmbH & Co. KG, Ulm, Germany) on a
Windows-based personal computer. We conducted all tests at room temperature and
chose quasi-static loading conditions with a speed of 2mm/min. We first increased
the compressive strain from 0% to 25% in increments of 5%, and subsequently the
tensile strain from 5% to 25%, also in increments of 5%, by moving the upper plat-
form in the y-direction. This resulted in axial stretches of a = (Ly + ∆y)/Ly with a
y-displacement ∆y and a specimen height Ly. At each axial stretch level, we applied
a sinusoidal simple shear up to a shear strain γ = ka = 0.2 in the x- and z-directions,
where the shear strain γ specifies the relative in-plane displacement of two parallel
layers in the material body divided by their separation distance Ly. During shear
loading, the lower platform moved relative to the fixed upper platform using a bi-
axial translation stage with the maximum displacements ∆x = ∆z = 0.2Ly. We
applied three cycles of shear per stretch level and direction, where two cycles served
as preconditioning steps and the third cycle was used for data analysis. We recorded
the forces with a three-axe force-sensor (K3D40, ME-Measuring Equipment, Hen-
ningsdorf, Germany) and calculated the shear stresses Pxy = f/A and Pyz = f/A as
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the shear force f , the force recorded in the direction of shear, divided by the shear
area A = LxLz with the specimen length Lx and specimen width Lz. The “elastic”
responses which we use for calibrating the hyperelastic constitutive model parame-
ters were obtained as the average between the loading and unloading responses. For
further discussions on the effects of post-mortem time and sample preparation, as
well as on the limitations of in vitro testing and the methods used to extract elastic
properties, we refer to [4].

Appendix B. Preliminary approximation of experimental data

Given all the data sets for simple shear, up to 20%, combined with different
compression or tension loading, up to 25% tension or compression (in 5% increments),
we can calibrate the modelWog defined by (17) for each prescribed stretch a, as in [4].
Figures B.8-B.9 show the constitutive behavior of the strain-energy function Wog of
equation (17) in terms of the shear stress Pxy versus shear strain, the nonlinear shear
modulus µ = Pxy/ka, and the relative error |Pmodel

xy −P data
xy |/|P data

xy |, where Pmodel
xy and

P data
xy represent the predicted and measured values of the shear stress, respectively,

and | · | denotes the absolute value. These figures also suggest that some of the
collected data are inaccurate, as discontinuities and noise appear in the nonlinear
shear modulus at less than 5% shear strain. Note that, since the discontinuities and
the noise are in the gradient, they are not captured by the plots of the measured
shear stress. Nevertheless, we can still calibrate the function Wog to the correct
experimental data, which leads to a very accurate approximation at over 5% shear,
and consider the values of the shear stress and nonlinear shear modulus identified by
the calibrated model as reliable predictions of the elastic behavior in both the small
and the large shear regime. In particular, for each axial stretch a, the nonlinear shear
modulus under small shear µ̃(a) is given by (20), which for the purpose of this study
we refer to as µ̃data(a).

In the linear elastic limit, the shear modulus (21) identified for the model cali-
brated to the simple shear data, i.e., Wog with parameters c0 = −0.0297 kPa and
α = −11.3757, is equal to µ0 = c0α = 0.3379 kPa. However, if we consider the strain
energy function Wog calibrated to the experimental data for simple shear and apply
axial tension or compression followed by simple shear to this model, we find that the
approximation of the experimental data corresponding to simple shear superposed
on axial compression becomes less and less accurate as compression increases, even
though the approximation of the data for simple shear superposed on axial tension
is reasonable (see Figure B.10).

In [22], a hyperelastic model calibrated to experimental data for porcine brain
tissue subject to simple shear was proposed, whereby the shear stress increases lin-
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Experimental data
Model: c0 = −0.0297, α = −11.3757
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Experimental data
Model: c0 = 0.0297, α = −11.3757
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Experimental data
Model: c0 = −0.0264, α = −10.8154
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Experimental data
Model: c0 = −0.0264, α = −10.8154
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Experimental data
Model: c0 = −0.0317, α = −8.6754
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Experimental data
Model: c0 = −0.0317, α = −8.6754
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Experimental data
Model: c0 = −0.0290, α = −7.7564
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Experimental data
Model: c0 = −0.0290, α = −7.7564
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Experimental data
Model: c0 = −0.0226, α = −7.2170
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Experimental data
Model: c0 = −0.0226, α = −7.2170
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Experimental data
Model: c0 = −0.0247, α = −6.1970
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Figure B.8: Shear stress Pxy and nonlinear shear modulus µ versus shear strain predicted by the
hyperelastic model Wog = c0(a)

(
λ
2α(a)
1 + λ

2α(a)
2 + λ

2α(a)
3 − 3

)
/ (2α(a)) with (black dashed curve)

compared to individual data sets (colored continuous line) for simple shear and for simple shear
superposed on different axial deformations, and relative errors for the shear stress Pxy, for simple
shear and simple shear superposed on different axial compressions.
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Experimental data
Model: c0 = −0.0297, α = −11.3757
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Experimental data
Model: c0 = 0.0297, α = −11.3757
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Experimental data
Model: c0 = −0.0189, α = −13.7780
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Experimental data
Model: c0 = −0.0189, α = −13.7780
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Experimental data
Model: c0 = −0.0171, α = −14.9842
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Experimental data
Model: c0 = −0.0171, α = −14.9842
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Experimental data
Model: c0 = −0.0113, α = −16.5264
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Experimental data
Model: c0 = −0.0113, α = −16.5264
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Experimental data
Model: c0 = −0.0044, α = −20.1281
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Experimental data
Model: c0 = −0.0044, α = −20.1281
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Experimental data
Model: c0 = −0.0017, α = −22.1971
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Experimental data
Model: c0 = −0.0017, α = −22.1971

0 5 10 15 20
0

10

20

30

40

50

60

70
Simple shear superposed on 25% tension

shear (%)

re
la

ti
v
e

 e
rr

o
r 

(%
)

Figure B.9: Shear stress Pxy and nonlinear shear modulus µ versus shear strain predicted by the
hyperelastic model Wog = c0(a)

(
λ
2α(a)
1 + λ

2α(a)
2 + λ

2α(a)
3 − 3

)
/ (2α(a)) with (black dashed line)

compared to individual data sets (colored continuous curve) for simple shear and for simple shear
superposed on different axial deformations, and relative errors for the shear stress Pxy, for simple
shear and for simple shear superposed on different axial tensions.
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Table B.3: Publications where experimental results for brain tissue under shear were reported, with
the conditions of measurement and number of test data available for model calibration specified.

tissue temperature deformation strain rate strain range data reference

human room shear dynamic 0% to 100% - [11]
brain loading
human body shear dynamic 0% to 50% 11 [20]
brain 37◦C loading
porcine room shear dynamic 0% to 100% 20 [40]
brain 22-23◦C loading
porcine room shear superposed on dynamic 0% to 10% shear 7 [19]
brain 23◦C compression loading -10% axial
bovine body shear dynamic 0% to 20% - [8]
brain 37◦C loading/unloading
human - shear quasi-static 0% to 50% 8 [37]
brain loading
porcine - shear quasi-static 0% to 50% 8 [37]
brain loading
mouse room/body shear superposed on quasi-static 0% to 45% shear 10 [35]
brain 23◦C/37◦C compression loading -40% to 0% axial ×2
mouse - shear superposed on quasi-static 2% shear 9 [35]
brain tension/compression loading -40% to 40% axial
human room shear superposed on quasi-static -20% to 20% shear 401 [4]
brain tension/compression loading/unloading -25% to 25% axial ×11
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Model: c0 = −0.0297, α = −11.3758
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Figure B.10: Constitutive behavior of strain-energy function Wog =

c0(a)
(
λ
2α(a)
1 + λ

2α(a)
2 + λ

2α(a)
3 − 3

)
/ (2α(a)) with parameters c0 = −0.0297 kPa and α = −11.3757

under simple shear superposed on up to 15% axial tension or compression: (A) nonlinear shear
modulus µ versus axial strain, given data and model, and (B) associated relative error for the
shear stress Pxy.

early with respect to the shear parameter 0 ≤ K ≤ 1, as also shown experimentally
by [40]. A careful inspection of the experimental data in [22, 40] suggests that
there are 3 to 5 non-zero test data supplied for simple shear with shear parameter
0 ≤ K ≤ 0.2, corresponding to 0% to 20% shear strain. Our experimental tests
for human brain tissue provide 201 data values for simple shear from 0% to 20%
shear strain (see top-left-hand plot in Figure B.8, or equivalently top left-hand plot
in Figure B.9), and similarly, 401 data for every simple shear deformation super-
posed on up to 25% tension or compression, in 5% increments, i.e., 401×11 data
values in total. More importantly, while the tests in [22, 40] were carried out with-
out pre-conditioning and at high strain rates (30/s or higher, requiring velocities
of over 120mm/s), the experimental measurements for our study were taken under
quasi-static loading (with velocity of 2mm/min), and averaged between the loading
and unloading paths (see Appendix A). For human brain tissue, in [44], a linear
behaviour compatible with a Neo-Hookean model was found under small torsion, up
to 3.5% strain. The linear behaviour of both porcine and human brain tissue in shear
was also observed in [30, 31], where Ogden models were proposed for large deforma-
tions. Softening in shear was noted by [19, 20, 35, 37]. By contrast, stiffening in
shear was reported in [4, 8, 11]. Furthermore, in [8], the discrepancies observed in
the mechanical properties of brain tissue in other studies were shown to be related
to the strain conditioning effect, consisting in non-recoverable changes in the mate-
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rial properties under finite strains, which also make the mechanical responses of the
tissue almost isotropic.

Table B.3 summarizes the above mentioned publications, where experimental
results under shear or combined stretch and shear deformations of brain tissues
were reported. From this table, we see that there are wide variations in the condi-
tions of measurement, particularly those reported by different authors. Besides, the
data which many authors provide to calibrate hyperelastic models are rather sparse,
and the table clearly demonstrates that the data set which we analyse here is the
most extensive and the only one for brain tissue in finite multiaxial loading. This
precludes conclusive quantitative comparisons between independent results [5], and
makes mathematical modeling of this tissue extremely challenging. Nevertheless,
it can reasonably be inferred that, when brain tissue is subject to large strains, the
shear stress increases strongly under axial compression, regardless of the stress-strain
response due to shear deformation alone [4, 35].

Appendix C. Three-term (three-parameter) constitutive model

In this appendix, at Step 2 in Section 4, we consider the three-term (three-
parameter) Ogden model

W3(λ1, λ2, λ3) =
c1
2

(
λ21 + λ22 + λ23 − 3

)
+
c2
2

(
λ−21 + λ−22 + λ−23 − 3

)
+
c3
4

(
λ41 + λ42 + λ43 − 3

)
,

(C.1)

with the constant parameters ci, i = 1, 2, 3, instead of the one-term (two-parameter)
hyperelastic model (22). For the three-term model, the nonlinear shear modulus
(11), the nonlinear shear modulus under small shear strain (15), and their linear
elastic limit (16) take on the following explicit forms

µ(a, k) = c1 +
c2
a

+ c3
(
λ21 + λ22

)
, (C.2)

µ̃(a) = lim
k→0

µ(a, k) = c1 +
c2
a

+ c3
1 + a3

a
, (C.3)

µ̃0 = lim
a→1

µ̃(a) = c1 + c2 + 2c3. (C.4)

To derive the model parameters, we calibrate the nonlinear shear modulus µ̃(a) of
equation (C.3) to the known values µ̃data(a) identified at the preliminary Step 1 in
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Section 4 (see also Appendix B), for small shear superposed on up to 25% tension
or compression (in 5% increments), and obtain c1 = −5.5090 kPa, c2 = 2.9269 kPa,
and c3 = 1.4653 kPa. This calibration is illustrated in Figure C.11 together with
the associated relative error |Pmodel

xy − P data
xy |/|P data

xy |. A quick comparison with the
relative errors shown in Figure 3C suggests that this three parameter model (C.1)
offers a slightly closer match to the given data for small shear superposed on varying
tension or compression than the two parameter model (22).
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Figure C.11: Constitutive behavior of strain-energy function W3 = c1
(
λ21 + λ22 + λ23 − 3

)
/2 +

c2
(
λ−2
1 + λ−2

2 + λ−2
3 − 3

)
/2 + c3

(
λ41 + λ42 + λ43 − 3

)
/4 with parameters c1 = −5.5090 kPa, c2 =

2.9269 kPa, and c3 = 1.4653 kPa under small shear superposed on axial tension or compression:
(A) nonlinear shear modulus µ̃ versus axial strain, given data and model, and (B) associated relative
error for the shear stress Pxy.

This model predicts a linear shear modulus (C.4) of µ0 = 0.3485 kPa and a
Young’s modulus of E0 = 3µ0 = 1.0455 kPa. Thus the three parameter model
(C.1) produces a slightly more accurate approximation to the linear shear modulus
µ0 = 0.3379 kPa identified at Step 1 (see Appendix B) than the two parameter model
(22).

Table C.4 summarizes the strain-energy function for this hyperelastic model, its
constant parameters, their calibrated values, and units. Figure C.12 summarizes the
predicted shear stress Pxy and nonlinear shear modulus µ compared to the experi-
mental data sets for simple shear, up to 20% shear strain, superposed on up to 25%
compression or tension (in 5% increments), and the relative errors. A comparison
with Figure 4 further suggests that, in large shear also, the results predicted by the
three-parameter model (C.1) are closer to the given data than those predicted by
the two parameter model (22). However, the decrease in the relative errors shown in

30



A
−20 −15 −10 −5 0 5 10 15 20

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

shear (%)

e
la

s
ti
c
 s

h
e
a
r 

s
tr

e
s
s
 P

x
y
 (

k
P

a
)

Simple shear superposed on axial tension or compression

 

 

25% tension

20% tension

15% tension

10% tension

 5% tension

 0% stretch

 5% compression

10% compression

15% compression

20% compression

25% compression

Model: c
1
 = −5.5090, c

2
 = 2.9269, c

3
 = 1.4653

B
−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

shear (%)

n
o
n
lin

e
a
r 

s
h
e
a
r 

m
o
d
u
lu

s
 µ

 (
k
P

a
)

Simple shear superposed on axial tension or compression

 

 

Experimental data

Model: c
1
 = −5.5090, c

2
 = 2.9269, c

3
 = 1.4653

C
0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

50

60
Simple shear superposed on axial tension or compression

shear (%)

re
la

ti
v
e
 e

rr
o
r 

(%
)

Figure C.12: Constitutive behavior of strain-energy function W3 = c1
(
λ21 + λ22 + λ23 − 3

)
/2 +

c2
(
λ−2
1 + λ−2

2 + λ−2
3 − 3

)
/2 + c3

(
λ41 + λ42 + λ43 − 3

)
/4 with parameters c1 = −5.5090 kPa, c2 =

2.9269 kPa, and c3 = 1.4653 kPa under simple shear superposed on different levels of axial tension
or compression: (A) Shear stress Pxy versus shear strain, experiment and model, (B) nonlinear
shear modulus µ versus axial strain, experiment and model, and (C) associated relative error for
the shear stress Pxy. The corresponding linear shear modulus is µ0 = 0.3438 kPa.
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Table C.4: Strain-energy function with related model parameters and calibrated values (and units)
for human brain tissues.

strain energy eq. model parameter value unit

W3 (C.1) Ogden c1 -5.5090 kPa
c2 2.9269 kPa
c3 1.4653 kPa

linear elastic limit (C.4) - µ0 0.3485 kPa

Figure C.12C compared to those in Figure 4C is limited, especially at more than 10%
shear. This trend was also observed when the number of Ogden terms was further
increased, even though the approximation under small shear superposed on varying
axial stretch continued to improve, as discussed in [23] (results not shown).
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