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Abstract

Dynamical systems on networks typically involve several dynamical processes evolving at different
timescales. For instance, in Alzheimer’s disease, the spread of toxic protein throughout the brain not
only disrupts neuronal activity but is also influenced by neuronal activity itself, establishing a feed-
back loop between the fast neuronal activity and the slow protein spreading. Motivated by the case
of Alzheimer’s disease, we study the multiple-timescale dynamics of a heterodimer spreading process
on an adaptive network of Kuramoto oscillators. Using a minimal two-node model, we establish that
heterogeneous oscillatory activity facilitates toxic outbreaks and induces symmetry breaking in the
spreading patterns. We then extend the model formulation to larger networks and perform numeri-
cal simulations of the slow-fast dynamics on common network motifs and on the brain connectome.
The simulations corroborate the findings from the minimal model, underscoring the significance of
multiple-timescale dynamics in the modeling of neurodegenerative diseases.

1 Introduction
Mathematical models of dynamical processes on networks are crucial to our understanding of pandemics,
economics, opinion formation, evolution, ecology, and neurodegenerative disease [1–5]. While the un-
derlying network structure is traditionally assumed to be static, it has become clear that network adap-
tivity is a crucial constituent to many real-world dynamical systems [6, 7]. For example, infectious
diseases spreading [8] and biological neural circuits [9] alter the network structures they are evolving
on, establishing a feedback loop between dynamics and network structure. Networks exhibiting such
mutual interactions between dynamical processes and network topology are referred to as adaptive, or
coevolutionary, networks [6, 10, 11]. In a range of applications, including oscillator networks [12–15],
consensus dynamics [16], and epidemic-resource dynamics [17], coevolutionary dynamics may also op-
erate on disparate timescales. Although techniques from geometric singular perturbation theory [18]
and averaging theory [19] can provide insights into the emerging multiple-timescale dynamics, these
methods become daunting in high dimensions.

A crucial—yet poorly understood—example of an adaptive network with multiple timescale dynam-
ics is the human brain during neurodegenerative diseases, such as Alzheimer’s disease. The defining
feature of Alzheimer’s disease is the accumulation of toxic variants of amyloid-β and tau protein ag-
gregates throughout the brain [20]. It is believed that these toxic variants are produced by a prion-like
mechanism, where toxic variants of the protein transform healthy variants into toxic ones [21]. Although
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both amyloid-β and tau are fundamental to the disease, the presence of tau correlates more signifi-
cantly with cognitive decline. Furthermore, it has been shown that tau proteins spread throughout the
brain following axonal pathways [22, 23], leading to neurodegeneration and decreases in neuronal ac-
tivity levels [21]. Tau proteins tend to follow a general spreading sequence—called the Braak staging
pattern—starting in the entorhinal cortex. However, the basis for the initiation of Braak staging in the
entorhinal cortex and the ensuing spreading pattern remains disputed. Furthermore, subgroupings of
patients according to systematic aberrations in Braak staging patterns further complicate our picture of
the disease [24, 25]. In recent years, however, it has become clear that neuronal activity plays a crucial
role in the spreading of tau protein. Specifically, it has been shown that neurons with higher firing rates
transport tau proteins at a higher rate into their neighbors [26–28]. As such, neuronal activity increases
the outward transport of tau proteins, while tau proteins lower neuronal activity levels. Importantly, pro-
tein spreading and neuronal activity evolve on vastly different timescales; protein spreading operates on
a timescale of years while neuronal activity operates on a timescale of seconds. The newly discovered
bidirectional relationship between neuronal activity and protein spreading may be the missing link in our
understanding of Alzheimer’s disease and other neurodegenerative diseases.

Mathematical modeling of neurodegenerative diseases has mostly focused on protein spreading and
neuronal activity in isolation. On the one hand, the slow evolution of the protein spreading and subse-
quent damage to the neural networks in Alzheimer’s disease can be captured with a continuum approach
using Fisher-KPP equations [29]. However, protein spreading dynamics can also be effectively mod-
eled from a network perspective using structural network reconstructions of the human brain. This idea
was initially introduced in [30]—and later expanded in [31]—and involves simplifying continuum mod-
els, easing the investigation of staging patterns [32, 33] and parameter estimation through Bayesian
techniques [34]. Furthermore, a separate and successful approach employs a heterodimer model to in-
vestigate how amyloid-β and tau spread during Alzheimer’s disease [35, 36]. On the other hand, the
activity of individual neurons that give rise to neural oscillations—which are fast relative to disease
progression—are captured by models of neuronal dynamics, such as the highly detailed Hodgkin–Huxley
model which can emulate pathologies by incorporating defects in ion channel conductivity. However,
the Hodgkin–Huxley model becomes intractable in larger networks of neurons, where oscillator models
such as Kuramoto oscillators [37], theta neurons [38], and integrate-and-fire neurons [39] have shown
great utility. In these models, the instantaneous oscillator frequencies are commonly interpreted as neu-
ronal firing rates, which is a common metric for neuronal activity. Only recently have the two aspects of
slow disease progression and fast neural dynamics been captured in a single modeling framework; see
for example [40, 41].

Motivated by the progression of Alzheimer’s disease, we here develop a multiple timescale approach
to elucidate the dynamics of spreading processes and oscillator dynamics on adaptive networks. More
specifically, we formulate a multiple timescale system where a slow heterodimer spreading process oc-
curs on a network of fast Kuramoto oscillators. The presence of protein slows the natural frequencies
of the Kuramoto oscillators, while the instantaneous frequencies of the Kuramoto oscillators increase
the outward transport of protein from their respective nodes. The network structure is adaptive, as the
Kuramoto frequencies alter the transport rates by scaling the link weights of the spreading network. In
other words, the Kuramoto oscillators are enforcing a global adaptivity rule on the spreading process.
With the goal of elucidating the role of fast oscillatory processes on the spreading patterns and vice versa,
we begin by studying a minimal two-node model using slow manifold reduction and ad hoc averaging
before corroborating our findings with numerical simulations of the generalized network model. We find
that heterogeneously distributed frequencies of oscillators destabilize the spreading process by lowering
the threshold for toxic outbreaks and inducing symmetry breaking in the spreading patterns. Moreover,
we find two modes for toxic outbreaks: conversion-dominated and shunting-dominated spreading.

This article is organized as follows: In Section 2, we consider the heterodimer model on a minimal
network of two nodes with asymmetric link weights to reflect the effect of activity on the spreading
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dynamics. In Section 3, we consider a multiple timescale two-node system, now equipped with both
heterodimer and Kuramoto dynamics, which we call theheterodimer-oscillator. In Section 4, we support
the �ndings from the minimal heterodimer-oscillator system by performing numerical simulations on
common motifs found in complex networks and investigating the effect oscillatory activity can have on
tau spreading in the human brain during Alzheimer's disease.

2 Heterodimer dynamics

In this section, we build on the classical heterodimer model for a simple 2-node graph and introduce
asymmetry in the coupling between the nodes to understand its impact on the system dynamics. Specif-
ically, we identify a pair of �xed points exchanging stability at a transcritical bifurcation and observe
that the asymmetrical coupling not only shifts the location of this bifurcation in parameter space but
also disrupts symmetries within the �xed points. The dynamical behavior of the asymmetrically-coupled
heterodimer model will be instrumental in our analysis of the full system with coevolutionary spreading
and oscillator dynamics later on in Section 3.

2.1 The heterodimer model

The heterodimer model describes a process of healthy proteins being converted into toxic proteins by a
second-order rate equation. The heterodimer model is often used in the context of networks, over which
both the healthy and toxic proteins are spreading. We assume that the process takes place on a network
with N nodes de�ned by a weighted adjacency matrixW = ( Wij ). ForW we de�ne the standard graph
LaplacianL = ( L ij ) with components

L ij = � Wij + � ij

NX

j =1

Wij ; (1)

where� ij is the Kronecker symbol. According to the heterodimer model, the evolution of the concentra-
tion of healthy proteinsui � 0 and of toxic proteinsvi � 0 at nodei is given by

_ui = �
NX

j =1

L ij uj + k0 � k1ui � k2ui vi ; i = 1 ; : : : ; N; (2a)

_vi = �
NX

j =1

L ij v � k3vi + k2ui vi ; i = 1 ; : : : ; N; (2b)

wherek0 > 0 is the healthy protein production rate,k1 > 0 andk3 > 0 are the healthy and toxic
clearance (protein degradation) rates, andk2 > 0 is the rate of conversion from healthy to toxic proteins.

With the ultimate goal of understanding how the possible dynamics of this system are affected by
oscillatory activity, we start with the simple case of two nodes connected by an undirected link as shown
in Figure 1(a):

_u1 = � `u1 + `u2 + k0 � k1u1 � k2u1v1; (3a)

_v1 = � `v1 + `v2 � k3v1 + k2u1v1; (3b)

_u2 = `u1 � `u2 + k0 � k1u2 � k2u2v2; (3c)

_v2 = `v1 � `v2 � k3v2 + k2u2v2; (3d)

where` > 0 is the single, reciprocal weight link. Note that all parameters and variables are nonnegative.
The system has two �xed points. In general, we refer to a �xed point ashealthyif vi = 0 for all
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Figure 1: Overview of the heterodimer variations.(a) The original heterodimer model, with healthy and
toxic species transported between the nodes at equal rates.(b) The skewed heterodimer model where
node1 has higher activity and thus increases the transport rate into node2. Note that toxic species do
not affect the activity parameterA. (c) The heterodimer-oscillator model, where each node harbors an
oscillator operating at a faster time rate than the spreading process. The oscillators are coupled and their
frequency determines the transport rate of species between the nodes; in this illustration, node1 has a
higher frequency. Conversely, the toxic species affect the intrinsic frequency of the oscillators.
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i = 1 ; : : : ; N andtoxic if vi > 0 for at least onei 2 f 1; : : : ; N g. The 2-node heterodimer model has
exactly one healthy �xed point (denoted by a superscriptH) and one toxic �xed point (superscriptT),
given by

uH
1 = uH

2 =
k0

k1
; vH

1 = vH
2 = 0 ; (4a)

uT
1 = uT

2 =
k3

k2
; vT

1 = vT
2 =

�
k2k3

; (4b)

where� = k0k2 � k1k3.
In terms of the dynamics, we are mostly interested in the transition between healthy states and toxic

states. In other words, we are interested in bifurcations where a healthy equilibrium loses stability and
a toxic equilibrium becomes stable. For (3), a direct computation of the linearized system around the
healthy equilibrium indicates that healthy and toxic equilibria interchange stability through a transcritical
bifurcation occurring at� = 0 . Indeed, the stability of the healthy state is governed by a single eigenvalue

� H =
�
k1

(5)

of the system's Jacobian matrix evaluated at the healthy �xed point. Hence, we conclude that the healthy
state is stable for� � 0 and the toxic �xed point is stable for� � 0.

2.2 The skewed heterodimer model

To understand the effect of activity dynamics on spreading, we now consider a constant activityA � 0
that affects the spreading as shown in Figure 1(b) but exclude the effect that spreading may have on
activity dynamics. Assuming that the activity processA > 0 taking place in node 1 increases spreading
to its neighbor, we obtain askewed heterodimer modelwhere the concentrations evolve according to

_u1 = � (` + A)u1 + `u2 + k0 � k1u1 � k2u1v1; (6a)

_v1 = � (` + A)v1 + `v2 � k3v1 + k2u1v1; (6b)

_u2 = ( ` + A)u1 � `u2 + k0 � k1u2 � k2u2v2; (6c)

_v2 = ( ` + A)v1 � `v2 � k3v2 + k2u2v2: (6d)

If A = 0 we recover (3). For the skewed heterodimer model (6), there is a single healthy �xed point

uH
1 =

k0(2` + k1)
k1(2` + A + k1)

; uH
2 =

k0(2(` + A) + k1)
k1(2` + A + k1)

; vH
1 = vH

2 = 0 : (7a)

Note that introducingA breaks the symmetry in the healthy �xed point between the two nodes, which
previously were independent of`. Eliminatingu1; u2 andv1 from the �rst �xed points, we �nd a cubic
equation for the toxic �xed point (vT

2 6= 0 ) given by

c0 + c1v2 + c2v2
2 + c3v3

2 = 0

with coef�cient values given in Appendix A.
To identify transitions between healthy and toxic states, we linearize the vector �eld at the healthy

�xed point. The eigenvalues of the Jacobian at the healthy �xed point are

� 1 = � k1 � 2` � A; � 2 = � k1; (8a)

� 3 =
� � �

k1
; � 4 =

� + � crit

k1
; (8b)
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Figure 2: Bifurcation diagram for toxic load in nodes 1 and 2 as a function of toxic clearancek3; other
parameters areA = 1=2; ` = 1 ; k0 = 1 ; k1 = 1 ; k2 = 1 . Inset: Bifurcation in (A,k3) parameter space.
Increasing activity destabilizes the healthy �xed point by shifting the transcritical bifurcation.

where� crit and� are given by

� crit = k1(2` + A)

p
s2

0 + s1 � s0

2s0
; (9a)

� = k1(2` + A)

p
s2

0 + s1 + s0

2s0
; (9b)

with constantss0 = k1(2` + A)(2` + A + k1), s1 = 4A2k0k2(k1(2` + A + k1) + k0k2). Since
all parameters are positive, it follows that� crit � 0 and� � 0. As such, we have that� 3 � � 4 and
� 1 < � 2 < 0, and hence� 4 dictates the stability of the healthy �xed point. The �xed point switches
stability at a critical value� = � � crit, from which we can easily separatek3. Freezing all parameters but
the toxic clearance ratek3, we look at the bifurcation in terms of the parameterk3, with critical value

kcrit
3 =

k0k2 + � crit

k1
; (10)

which satis�esk0k2=k1 � kcrit
3 � 2k0k2=k1 and is monotonically increasing inA (see Appendix B).

We conclude that introducing the activity parameterA shifts the transcritical bifurcation to higher values
with respect tok3. The effect of activity is todestabilizethe healthy �xed point as shown in Figure 2.
Equivalently, in terms of neuroscienti�c applications, heterogeneous neuronal activity pushes neurons
toward pathology.

It is interesting to understand the behavior of the toxic equilibrium as a function of the activity.
Assuming that activityA is small compared tò, we can expand the toxic equilibrium to �rst order inA
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to obtain

uT
1 =

k3

k2

�
1 +

� � 2k3`
4k3`2 + 2k0k2` + k3�

A
�

+ O(A2); (11a)

uT
2 =

k3

k2

�
1 �

� � 2k3`
4k3`2 + 2k0k2` + k3�

A
�

+ O(A2); (11b)

vT
1 =

�
k2k3

�
1 �

2k3` + k2
3 + k0k2

4k3`2 + 2k0k2` + k3�
A

�
+ O(A2); (11c)

vT
2 =

�
k2k3

�
1 +

2k3` + k2
3 + k0k2

4k3`2 + 2k0k2` + k3�
A

�
+ O(A2); (11d)

We see that activity can affect the �xed point in two distinct ways assuming� > 0 so that the healthy
�xed point is unstable: If� � 2k3` > 0, thenu1 increases whilev1 decreases andu2 decreases whilev2

increases. By contrast, if� � 2k3` < 0 is small, thenu1 decreases whilev1 decreases, andu2 increases
while v2 increases. In the former case, the conversion process is dominating, and the effective conversion
at node 1 has decreased while it has increased in node 2. In the latter case, the transport process dominates
and both species at node 1 are being shunted over to node 2. Thisshuntingphenomenon does not occur
in the original heterodimer model and is showcased in Figure 3.

3 Coupling heterodimer dynamics with oscillatory activity

In the previous analysis, we considered the activityA to be a constant. In the brain, activity may relate
to collective neural oscillations that are fast compared to the disease progression. Therefore, we now
assume thatA is determined by the evolution of a pair of phase oscillators with Kuramoto coupling.
Since the spreading and activity processes evolve on different time scales, the coupling between the two
systems de�nes a slow-fast dynamical system.

3.1 Two coupled phase oscillators

First, consider two phase oscillators, one on each node, with Kuramoto coupling. That is, the state of the
oscillation on nodei 2 f 1; 2g is given by a phase� i 2 S := R=2� Z that evolves according to

_� 1 = ! 1 +
K
2

sin (� 2 � � 1); (12a)

_� 2 = ! 2 +
K
2

sin (� 1 � � 2); (12b)

where! i > 0 are the intrinsic frequencies of the nodes andK � 0 is thecoupling strength. Since
the coupling depends solely on the phase difference, the dynamics are completely determined by the
evolution of the phase difference� := � 1 � � 2 determined by

_� = � ! � K sin �; (13)

where� ! = ! 1 � ! 2 is assumed to be positive, without loss of generality. ForK > j� ! j there are two
�xed points (one unstable and one stable attracting all initial conditions except the unstable �xed point).
ForK < j� ! j there are no �xed points and any solution� (t) is periodic. At the critical coupling strength
K = j� ! j, there is a saddle-node bifurcation. Hence, we essentially have two regimes depending on the
dynamics; we refer to them as the strong-coupling regime (�xed points) and the weak-coupling regime
(periodic orbit).
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Figure 3: Comparison of steady-states of healthy and toxic species in nodes 1 (black) and 2 (red)
determined by simulation (solid lines) and �rst-order Taylor expansion (stippled line) of the activity
parameterA. The upper row demonstrates the conversion-dominated regime, whereas the bottom row
demonstrates the shunting-dominated regime. All parameters are set to1, except fork3 = 0 :25 in the
�rst row (far from the transcritical bifurcation atkcrit

3 = 1 ) andk3 = 0 :95 in the second row (close to the
transcritical bifurcation).
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We assume that the activity at each node is related to theinstantaneous frequencies, _� 1 and _� 2 of
each node. We de�ne theaverage frequencyof each oscillator:


 i = lim
T !1

1
T

Z T

0

_� i (t)dt; (14)

which is independent of the initial conditions. In the strong-coupling regime (the coupling between
oscillators is strong compared to the frequency mismatch and the phase difference� converges to a
�xed point), the oscillators are frequency locked. At the �xed points, we have a constant instantaneous
frequency_� 1(t) = _� 2(t) = h! i := ( ! 1 + ! 2)=2, which implies


 1 = 
 2 = h! i : (15)

In the weak-coupling regime (the coupling between the oscillators is weak compared to their frequency
mismatch and the phase difference undergoes periodic oscillations), we compute the average frequen-
cies
 i through the average frequency difference

�
 = lim
T !1

1
T

Z T

0

_� (t)dt: (16)

De�ne � T = 2 �= �
 , assume0 � K < � ! , and let� (t) be the� T-periodic solution of (13). Note
that the sign of_� is constant. With (13) we have

�
 = � ! � K lim
T !1

1
T

Z T

0
sin � (t)dt; (17)

With m = T=j� T j, we can rewrite the integral as

lim
m !1

1
mj� T j

Z m j � T j

0
sin � (t)dt =

1
j� T j

Z j � T j

0
sin � (t)dt =

�

K

�
� !

p
� ! 2 � K 2

� 1
�

; (18)

where the last equality follows from substitutingt by � (which is possible since the sign of_� is constant)
and solving the resulting integral by Weierstrass substitution. Using this last expression in (17) yields

�
 =
p

� ! 2 � K 2; (19)

from which we compute the asymptotic frequencies of each node


 1 = h! i +

p
� ! 2 � K 2

2
; (20a)


 2 = h! i �

p
� ! 2 � K 2

2
: (20b)

3.2 Slow-fast heterodimer-oscillator dynamics

Next, we couple the oscillatory dynamics with the heterodimer model of protein spreading. The two
processes will evolve on distinct time scales, determined by a small strictly positive constant� � 1,
representing the ratio between the fast activity time scale and the slow spreading time scale. Speci�cally,
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the two-nodeheterodimer-oscillator(see Fig. 1c) system is

_u1 = � (` + �A 1(� ))u1 + ( ` + �A 2(� ))u2 + k0 � k1u1 � k2u1v1; (21a)

_v1 = � (` + �A 1(� ))v1 + ( ` + �A 2(� ))v2 � k3v1 + k2u1v1; (21b)

_u2 = ( ` + �A 1(� ))u1 � (` + �A 2(� ))u2 + k0 � k1u2 � k2u2v2; (21c)

_v2 = ( ` + �A 1(� ))v1 � (` + �A 2(� ))v2 � k3v2 + k2u2v2; (21d)

� _� 1 = b! 1(v1) +
K
2

sin (� 2 � � 1); (21e)

� _� 2 = b! 2(v2) +
K
2

sin (� 1 � � 2); (21f)

where� > 0 scales the oscillators' effect on spreading. We assume that the coupling between het-
erodimer and oscillatory dynamics is through the phase-dependent activity of nodes1 and2, that is,

A1(� ) = � _� 1; A2(� ) = � _� 2; (22)

and the intrinsic frequencies

b! 1(v1) = ! 1 � cv1; b! 2(v2) = ! 2 � cv2; (23)

that are decreased by the presence of toxic proteins with a scaling parameterc > 0. As discussed above,
we may replace the phase dynamics in (21) by the evolution of the phase difference� as above given by

� _� = � ! � c� v � K sin �; (24)

where� v = v1 � v2 is the difference in toxic protein concentration. The phase locking behavior is now
determined by the effective intrinsic frequency difference� b! = b! 1 � b! 2 = � ! � c� v, which is a
function of� v. As there is no sensible interpretation ofnegativeneuronal activity, we will only consider
parameters for whichA i (t) � 0; i 2 f 1; 2g for all t, which implies that the intrinsic frequencies are
positive! i > 0.

Given that the spreading dynamics is much slower than the oscillator dynamics (on the order of years
versus seconds), we are interested in the dynamics for small� close to the singular limit� ! 0. In
the singular limit, the phase dynamics relax instantaneously to the asymptotic dynamics of the phase-
difference� (t). Thus, the dynamics in the singular limit depend on which dynamical regime the phase
difference is operating in. In the phase-locked regime, the dynamics relax instantaneously to equilibrium,
which de�nes the critical manifold of the slow-fast system on whichA i takes its value at equilibrium. In
the regime where the phase difference� (t) is drifting, we replace the instantaneous frequency inA i by
the temporal average
 i ; this is similar to the approach in [15]. Finally, we consider the system at the
border between the two regimes.

3.3 The phase-locking regime

Assume thatj� b! (� v)j � K . Then the singular-limit dynamics on the slow manifold is determined by
the stable phase-difference equilibria

� = sin � 1
�

� ! � c� v
K

�
: (25)

Inserting the �xed point intoA i , both nodes have identical activities

A1 = A2 = h! i �
c(v1 + v2)

2
: (26)
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Substituting these expressions into the slow system gives us the dynamics on the phase-locking critical
manifold.

Since the nodes have identical activity levels, the dynamics are qualitatively equivalent to those of
the isolated heterodimer model. In particular, the system has the same pair of healthy and toxic �xed
points as the heterodimer model given by (4) :

uH;P
1 = uH;P

2 =
k0

k1
; vH;P

1 = vH;P
2 = 0 ; (27a)

uT ;P
1 = uT ;P

2 =
k3

k2
; vT ;P

1 = vT ;P
2 =

�
k2k3

: (27b)

The stability of the healthy �xed point is determined by the eigenvalues of the Jacobian matrix:

� 1 = � k1 � 2(` + � h! i ); � 2 = � k1; (28a)

� 3 =
�
k1

� 2(` + � h! i ); � 4 =
�
k1

: (28b)

Thus, the healthy �xed point loses its stability at� = 0 .
The assumption of being in the phase-locking regime,j� b! (� v)j < K , gives a consistency condition

for the existence of the �xed points on the critical manifold. Note that since the activity of each node in
the phase-locking regime is identical, the slow dynamics is symmetric in the sense that exchanging the
two nodes has no impact on the dynamics. Furthermore, for both �xed points, the nodes are “equal” in
the sense that they take the same state and satisfy� v = 0 . Thus, the healthy and toxic �xed points only
exist as �xed points on the critical manifold for the slow dynamics ifj� b! (0)j = j� ! j � K .

3.4 The drifting regime

Outside the phase-locked regime,j� b! (� v)j > K , the fast oscillatory dynamics do not relax to equilib-
rium but evolve on a periodic orbit. As these oscillations are much faster than the evolution of the slow
dynamics, we average out the fast oscillations by replacing the activitiesA i by their temporal averages
to de�ne thedrifting regime. Speci�cally, replacing! i with b! i (vi ) in (20) and assuming, without loss of
generality, that� b! � 0 yields the activities

A1(v) := � b
 1 = h! i �
c(v1 + v2) �

p
(� b! (� v))2 � K 2

2
; (29a)

A2(v) := � b
 2 = h! i �
c(v1 + v2) +

p
(� b! (� v))2 � K 2

2
: (29b)

Substituting these activities into the dynamical equations for the slowly-evolving heterodimer equations
yields the dynamics of the drifting regime. As the activities of the two nodes are now distinct, the dy-
namics is similar to the skewed heterodimer model in Section 2.2. There is one healthy �xed pointuH;D

in the drifting regime with coef�cients

uH;D
1 =

k0

k1

 

1 � �

p
� ! 2 � K 2

k1 + 2 ` + 2 � h! i

!

; (30a)

uH;D
2 =

k0

k1

 

1 + �

p
� ! 2 � K 2

k1 + 2 ` + 2 � h! i

!

; (30b)

vH;D
1 = vH;D

2 = 0 ; (30c)
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under the assumption thatj� b! (0)j = j� ! j � K . Similar to the skewed heterodimer model, the sym-
metry of the �xed points is broken. Linear stability of the healthy �xed point is determined by the
eigenvalues of the Jacobian matrix:

� 1 = � k1 � 2(` + � h! i ); � 2 = � k1; (31a)

� 3 =
� � �

k1
; � 4 =

� + � crit

k1
; (31b)

where

� crit = k1(` + � h! i )

p
s2

0 + s1 � s0

s0
;

� = k1(` + � h! i )

p
s2

0 + s1 + s0

s0
;

with s0 = 2k1 (` + � h! i ) (k1+2 `+2 � h! i ) ands1 = 4 � 2k0k2(� ! 2� K 2)(k0k2+ k1 (k1 + 2 ` + 2 � h! i )) .
Remembering that the healthy �xed point only exists forj� ! j > K , we can assert that� crit; � > 0, as
is veri�able by inspectings1. As such,� 4 determines the stability ofuH;D . The critical value forkcrit

3 at
which the transcritical bifurcation occurs is

kcrit
3 =

k0k2 + � crit

k1
: (32)

Assuming� small compared tò, we expand the toxic �xed pointuT ;D in the drifting regime to �rst
order in� , giving us

uT ;D
1 =

k3

k2

 

1 + �
(� � 2k3`)

p
� ! 2 � K 2

4k3`2 + 2k0k2` + k3�

!

+ O(� 2); (33a)

uT ;D
2 =

k3

k2

 

1 � �
(� � 2k3`)

p
� ! 2 � K 2

4k3`2 + 2k0k2` + k3�

!

+ O(� 2); (33b)

vT ;D
1 =

�
k2k3

 

1 � �

�
2k3` + k2

3 + k0k2
� p

� ! 2 � K 2

4k3`2 + 2k0k2` + k3�

!

+ O(� 2); (33c)

vT ;D
2 =

�
k2k3

 

1 + �

�
2k3` + k2

3 + k0k2
� p

� ! 2 � K 2

4k3`2 + 2k0k2` + k3�

!

+ O(� 2); (33d)

where the coef�cients are similar to the expansion of the skewed heterodimer toxic �xed point, except
that they are scaled by

p
� ! 2 � K 2. As such, we have transport- and conversion-dominated behavior

for small and large values of� � 2k3` respectively. More importantly, we have established the existence
of a toxic �xed pointuT ;D on the drifting regime for small� .

Note that the above coef�cients are only de�ned forK � j � ! j, similarly to uH;D . As such, our
preceding analysis suggests a symmetry-breaking, global bifurcation occurring atK = j� ! j in which
from one side (from the phase-locking regime) two �xed point branches collide and disappear (saddle-
node bifurcation on an invariant circle), but from the other side (from the drifting regime) two periodic
solutions collide and disappear. Furthermore, the �xed points in the phase-locking regime are symmetric
between the nodes with respect to their heterodimer variables, whereas both the periodic solutions are
asymmetric in this respect. A summary of the heterodimer-oscillator dynamics in the strong-coupling
and weak-coupling regimes can be found in Figure 4 alongside numerical solutions for� > 0. Moreover,
an overview of the dynamical regimes and the (singular-limit) transcritical bifurcation is illustrated in
(K; k 3) parameter space in Figure 5.
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Figure 4: Summary of the dynamics in the phase-locking and drifting regime with simulations in the
healthy (black) and toxic (red) regimes of the heterodimer-oscillator with� > 0. Left: Summary forK >
� ! over the phase-difference and toxic species difference, whereK = 2 ; � ! = 1 ; c = 1 ; k0 = 1 ; k1 =
1; k2 = 1 ; � = 1 ; ` = 10 � 3 with forward solutions in the toxic (� = 0 :2, k3 = 0 :75) and healthy regime
(� = 0 :075, k3 = 1 :25). Both forward solutions are symmetric with respect to the slow variables.Right:
Summary forK < � ! whereK = 1 ; � ! = 2 ; c = 1 ; k0 = 1 :5; k1 = 1 ; k2 = 1 ; � = 1 ; ` = 10 � 3 and
with forward solutions in toxic (� = 0 :1; k3 = 0 :125) and healthy regimes (� = 0 :075; k3 = 1 :25). Both
forward solutions are asymmetric with respect to the slow variables (the healthy solution is asymmetric
with respect to the healthy species). Note that the trajectories in the healthy regimes converge to� v = 0
(highlighted with a stippled, orange line) in both diagrams.

3.5 Transitions between the phase-locking and drifting regimes

With an understanding of the dynamics within the phase-locking regime (Section 3.3) and drifting regime
(Section 3.4) at hand, we can now elucidate possible transitions between the regimes. The boundary
between the regimes is where the fast dynamics undergo a saddle-node bifurcation atj� b! (� v)j =
j� ! � c� vj = K . Equivalently, we obtain the following condition for the regime border

� v =
� ! � K

c
: (34)

The value of� v is subject to the slow dynamics (21). Speci�cally, the sign of(� v)_ := d
dt (� v) de-

termines the transitions between the phase-locking and drifting regimes: For the right boundary of the
phase-locking regime,� v = � ! + K

c , negative(� v)_indicates that the slow �ow points from the drifting
regime into the phase-locking regime and a positive(� v)_in the opposite direction. For the left boundary,
the conditions are the other way around. In the following, we will argue that, under certain assumptions,
the �ow points towards the phase-locking regime forK > j� ! j and towards the drifting regime for
K < j� ! j; this is sketched in Figure 6.

To determine the transitions between the regimes, we consider the dynamics of� v. In the singular
limit, the dynamics have relaxed to the saddle-node equilibrium and thusA � := A1 = A2. Now
we assume that theui take their equilibrium values, withu1 = u2 = k0=k1 (healthy regime) and
u1 = u2 = k3=k2 (toxic regime);u1 = u2 =: u� in either case. According to (21), the evolution of� v
is determined by

(� v)_= � (2` + �A � + ( k3 � k2u� ))� v: (35)

We claim that the �rst factor is not positive (i.e., the quantity in the parentheses is not negative). The �rst
two terms are clearly positive since` � 0 and, by assumption,A � � 0. For the third term,k3 � k2u� � 0
is equivalent tou� � k3

k2
. But, by assumption,u� = k3=k2 or u� = k0=k1 � k3=k2 so in either case
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Figure 5: Summary of the dynamics of the 2-node heterodimer-oscillator in the singular limit (� ! 0).
The labels in each quadrant state which �xed point we know to be stable. The transcritical bifurcation in
the weak-coupling and strong-coupling regime is presented, together with the breaking of the symmetry
between the two nodes in the �xed points, which occurs atK = j� ! j. Parameters arek0 = 1 ; k1 =
1; k2 = 1 ; ` = 1 ; ! 1 = 10; ! 2 = 5 ; � = 5 :

Figure 6: The vector �eld of� v in terms of� ! and� v in the strong-coupling (left) and weak-coupling
regime (right). The inner region in both diagrams is the phase-locking regime, and the outer regions are
the drifting regime. We see that for strong couplingK > j� ! j, the vector �eld points inwards to the
phase-locking regime. However, for the weak-coupling regimeK < j� ! j, the vector �eld points to the
left-hand drifting regime for� ! > 0 (node 1 is more active than node 2) and to the right-hand drifting
regime for� ! < 0 (node 2 is more active than node 1).
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the third term is not negative. We conclude that the sign of(� v)_only depends on the sign of� v. For
the right boundary of the phase-locking regime, we have� v = (� ! + K )=cso� v > 0 or equivalently
K > � � ! implies(� v)_� 0 (�ow towards the phase-locking regime). Conversely,K < � � ! implies
(� v)_ � 0 (�ow towards the drifting regime). Similarly, for the left boundary of the phase-locking
regime, we have� v = (� ! � K )=csoK < � ! implies(� v)_ � 0 (�ow towards the drifting regime)
andK > � ! implies(� v)_� 0 (�ow towards the phase-locking regime).

Thus in terms of the system parameters, the crucial quantity is the oscillator coupling relative to the
intrinsic frequency mismatch. IfK > j� ! j then the �ow points towards the phase-locking regime on
either boundary. IfK < j� ! j then the �ow points in the same direction on each boundary and the
direction is determined by the sign of� v. These cases are illustrated in Figure 6.

3.6 Extending the parameter regime

From the beginning, we have assumedc and� to be positive. These assumptions, however, may not be
�t for all applications of the heterodimer-oscillator model. For example, one might envision spreading
processes thatincreasesoscillatory activity locally (c < 0), and, in return, oscillatory processes that
decreasesspreading to its neighboring oscillators (� < 0). First, we consider the casec < 0. None of
the singular-limit �xed points nor their stability depend onc, and the regime border analysis above can
be repeated successfully forc < 0 and� > 0 (noting that the left- and right-hand borders swap places).
For � < 0, we may assume� h! i > � ` to guarantee that our stability analysis of the phase-locking and
drifting equilibria remains unaffected (see eigenvalues in Eqs. (28) and (31)). The assumption is within
reason; it is equivalent to stating that the link between the nodes` + �A (� ) does not change signs for
� v = 0 . For the regime border analysis to hold, we require� � � 2`=A �

max whereA �
max is the maximum

of the phase-locked activity overv1 andv2 (see Eq. (26)). Forc > 0, we have thatA �
max = h! i giving

� h! i � � 2`, which is already satis�ed by� h! i > � `. However,A �
max increases inde�nitely inv1 andv2

for c < 0. Hence, we need additional bounds on the variablesv1 andv2 to ensure that the regime border
analysis holds. Although the regime border analysis cannot be repeated forc; � < 0 without further
assumptions, we can conclude that the �xed point linear stability analysis generalizes toc; � 2 R,

4 Activity-spreading feedback on networks

Investigating the dynamics of the heterodimer-oscillator system on more general networks, we �nd that
the results from the 2-node heterodimer-oscillator system provide a strong intuition for the generalized
network dynamics. Speci�cally, we consider a network ofN nodes determined by theN � N (weighted)
adjacency matrixW with LaplacianL . Letu; v 2 RN denote the healthy and toxic species concentration
at each node and� 2 SN the state of the oscillators on each node. Generalizing (21), the states evolve
according to

_ui = �
NX

j =1

L ij (1 + �A j )ui + k0 � k1ui � k2ui vi ; for 1 � i � N (36a)

_vi = �
NX

j =1

L ij (1 + �A j )vi � k3v + k2ui vi ; for 1 � i � N (36b)

� _� i = ! i � cvi + K
NX

j =1

Wij sin (� j � � i ); for 1 � i � N (36c)

whereA = � [ _� 1; _� 2; : : : ; _� N ].

15



(a) (b)

(c)

Figure 7: Simulations demonstrating the transcritical bifurcation during the weak-coupling and strong-
coupling regime in a random graph. All weights in the network are set to1, and the intrinsic frequencies
were drawn from a normal distribution.(a) The weak-coupling parameters are� = 0 :1; k0 = 1 ; k1 =
1; k2 = 1 ; E(! ) = 10 ; Var(! ) = 0 :25; c = 0 :5; � = 10 � 3; � = 10; K = 0 :1, while one of the oscillators
(dark black) at a slower frequency! = 5 . (b) The strong-coupling parameters are� = 0 :1; k0 = 1 ; k1 =
1; k2 = 1 ; E(! ) = 10 ; Var(! ) = 0 ; c = 0 :5; � = 10 � 3; � = 10; K = 0 :1. (c) The Erd�os–Ŕenyi graph
(N = 10; p = 0 :5).

4.1 Numerical exploration of key example networks

Erd �os–Ŕenyi random graphs. Dynamics on Erd�os–Ŕenyi random graphs retain the transcritical bi-
furcation near� = 0 alongside its symmetry for small differences between the intrinsic frequencies of
the nodes; cf. Figure 7. However, with large differences in the intrinsic frequencies, the transcritical
bifurcation extends the toxic parameter regime and breaks the symmetry of the �xed points between the
nodes, just as expected from our analysis of the 2-node system.

Chain graphs. To further test our intuition, we create a chain graph with decreasing frequencies along
the chain. If we initialize a small amount of toxic species in each node, we expect (in the steady state) a
gradient of increasing toxic species along the chain. As observed in Figure 8, this prediction is accurate.
Additionally, we observe shunting behavior. First, the healthy species are quickly transported according
to the nodes' activity gradient, and then the healthy species are converted into toxic species. According
to our 2-node analysis, such shunting behavior should occur close to the original transcritical bifurcation
� = 0 , which is where the simulation in Figure 8 has been parameterized.
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(a) (b)

(c) (d)

(e)

Figure 8: Simulations demonstrating heterodimer-oscillator dynamics on a chain network. All link
weights are set to0:1 while other parameters are� = 0 :5; k0 = 1 ; k1 = 1 ; k3 = 0 :75; k2 = 1 ; � =
10� 3; � = 1 K = 1 ; c = 0 :5. The natural frequencies of the nodes,! i , range from 5 to 15 with
increments of 2.5. Colors are consistent across �gure panels.(a) The evolution of healthy species.(b)
The evolution of toxic species.(c) The activity (instantaneous frequencies) of the nodes.(d) The phase-
coherence of the Kuramoto order parameter of the oscillators.(e)Graph of the network.
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Clustered networks. Many complex networks show high degrees of clustering. As such, we created a
network of 3 fully-connected clusters of 10 nodes each, where each cluster is connected to each other by
two links chosen between a random node pair; cf. Figure 9. We then drew the intrinsic frequencies from
normal distributions where each cluster has a different mean. That is, one cluster will be highly active,
one will be moderately active, and one will be less active. By doing so, we will have 3 synchronized
clusters that are weakly connected to each other. As before, we set the parameters in the toxic regime,
yet close to the original transcritical bifurcation at� = 0 . As shown in Figure 9, the simulations con�rm
the intuition from the 2-node system. At �rst, the healthy species are shunted towards the lesser active
clusters, where they are subsequently converted into toxic species. The least active cluster thus pro-
duces the most toxic species followed by the moderately active and highly active clusters, respectively.
These simulations suggest that the heterodimer-oscillator might also be suitable for mean-�eld models
of population dynamics.

4.2 Exploring coevolutionary dynamics in Alzheimer's disease

Our original motivation was to investigate the effect that the slow-fast dynamics between neuronal activ-
ity and pathological protein spreading exert on the progression of neurodegenerative diseases. Previous
studies have modeled the progression of Alzheimer's disease as a spreading process on network recon-
structions of the human brain. These network reconstructions are called connectomes and are built using
DTI imaging which are subsequently parcellated into networks of arbitrary size. Nodes in the network
represent brain regions and links between brain regions represent axonal bundles.

Typically, modelers will simulate the spreading of tau proteins across the connectome, leading to
neurodegeneration and neuronal death. Tau proteins start to aggregate at the entorhinal cortex and spread
progressively to the hippocampus, the limbic system, and the neocortex. The successive spread of tau
has been shown to follow a pattern, and, as such, the spreading of tau is divided into six stages known
as the Braak staging scheme. However, not all patients follow the Braak staging scheme. In fact, studies
suggest that Alzheimer's patients �t into different subgroups based on their staging patterns [24, 25].
Furthermore, as noted in the Introduction, tau proteins are believed to be transported at a higher rate from
higher-active neurons [26], and several studies suggest a crucial link between brain-wide correlations
of brain activity and disease spreading patterns [42, 43]. We here provide proof-of-concept, with our
heterodimer-oscillator model, that neuronal activity may play a mechanistic role in the spreading of tau
protein seen in Alzheimer's disease staging.

We simulate the spreading of tau on the 83-node Budapest Reference Connectome [44]—in which
the simulation initially follows the canonical Braak staging pattern—and gradually increase the effect
that neuronal activity has on spreading, which is achieved by increasing� . To simulate the natural
progression of Alzheimer's disease, we only initialize a nonzero concentration of toxic protein in the
entorhinal cortex (Braak stage I).

To visualize the Alzheimer's simulations more easily, we investigate metrics averaged over the re-
gions per their Braak staging. As shown in Fig. 10(a), we see that neuronal activity induces symmetry
breaking in asymptotic toxic protein concentrations (asymptotic refers here to the end of disease sim-
ulation). Different regions become more susceptible to tau pathology than others due to the activity-
dependence of tau spreading. Furthermore, in Fig. 10(b), we see that the arrival time of the Braak
staging is affected by neuronal activity, although the ordering of the Braak stages is robust. Even without
activity-dependent spreading, the tau spreading model achieves the correct Braak staging. Including neu-
ronal activity swaps the order of Braak stage II and III, but the ordering remains unaffected otherwise.

However, the inclusion of activity-dependent spreading has little effect on the neuronal dynamics
themselves, as evidenced in Fig. 10(c,d). In Fig. 10(c), we show the asymptotic average frequency of
the neural oscillators. As tau spreads, it decreases the intrinsic frequencies of the oscillators. However,
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(a) (b)

(c) (d)

(e)

Figure 9: Simulations demonstrating heterodimer-oscillator dynamics on a clustered network. All net-
work link weights are set to0:1, while other parameters are� = 0 :5; k0 = 1 ; k1 = 1 ; k3 = 0 :75; k2 =
1; � = 10 � 3; � = 1 K = 1 ; c = 0 :5. Clusters are colored green (highest activity), red (medium activity),
and red (lowest activity) respectively. The average intrinsic frequencies of the clusters,! i , are normally
distributed with means5 (black),10 (red), and15 (green) and a common standard deviation of0:5. (a)
The evolution of healthy species.(b) The evolution of toxic species.(c) The activity (instantaneous
frequencies) of the nodes(d) The phase-coherence of the Kuramoto order parameter of the oscillators.
(e)Graph of the network.
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