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Abstract

Constitutive modelling of nonlinear isotropic elastic materials requires a general formulation of the strain-
energy function in terms of invariants, or equivalently in terms of the principal stretches {A1, A2, As}. Yet,
when choosing a particular form of a model, the representation in terms of either the principal invariants
or stretches becomes important, since a judicious choice between one or the other can lead to a better en-
capsulation and interpretation of much of the behaviour of a given material. Here, we introduce a family of
generalised isotropic invariants, including a member J, = A{ +A§ + A, which collapses to the classical first
and second invariant of incompressible elasticity when « is 2 or -2, respectively. Then, we consider incom-
pressible materials for which the strain-energy can be approximated by a function W that solely depends
on this invariant J,. A natural question is to find « that best captures the finite deformation of a given
material. We first show that there exist pseudo-universal relationships that are independent of the choice of
W, and which only depend on «. Then, on using these pseudo-universal relationships, we show that one can
obtain the exponent a that best fits a given dataset before seeking a functional form for the strain-energy
function W. This two-step process delivers the best model that is a function of a single invariant. We
show, on using specific examples, that this procedure leads to an excellent and easy to use approximation
of constitutive models.
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1. Introduction

In isotropic hyperelasticity, the central concept in describing the deformation is the deformation gradi-
ent F. From this deformation gradient, we define the left B = FFT and right C = FTF Cauchy-Green
deformation tensors. Due to objectivity and isotropy, we know that the strain-energy function W can then
be written as a function of either the principal stretches {A1, A2, As}; i.e., the square roots of the eigenvalues
of B as in the work of Valanis and Landel (1967), or any other symmetric combination of these stretches
such as the classical invariants of B used, for example, in the seminal work of Rivlin (1948). Clearly, any
other set of isotropic invariants based on \; are also admissible as, for example, within the framework of
weakly-nonlinear theory of elasticity where the preferred choice of strain measure is the Green — Lagrangian
strain tensor E = (C —1I) /2, and thus the set of invariants {trace E, trace E?, trace E*} is used (see, e.g.,
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Saccomandi and Vergori, 2021).

Mathematically, any choice of complete set of invariants is equivalent. For example, for isotropic
materials, the strain-energy function can be expressed as a function of the principal stretches Wy,s =
Wps (A1, A2, Az), where the subscript ‘ps’ denotes principal stretches, with the symmetry condition:

Wps (A1, A2, A3) = Wis (A2, Az, A1) = Wis (A3, A1, Ag) - (1)
Another popular choice is to use the complete set of (principal) invariants of B :
I = tr(B) = A\ + A2 + A2 (2)
1
L= [(tr(B))? — tr(B?)] = MA3 + A3\ + A1AS, (3)
I3 = det(B) = MIA3)\3. (4)

Alternatively, one may use the not-so-popular set:

i1 = A+ X2+ Az, (5)
ig = At A2 + Aoz + A1 A3, (6)
13 = A1 A2z, (7)

or more generally any other set of three invariants which are independent and symmetric functions of the
principal stretches, some of which may have useful symmetry built into them (see, e.g., Criscione et al.
(2000) and Ennis and Kindlmann, 2006).

At a formal level, one can, in principle, reformulate any strain-energy function into any such complete
set of invariants or stretches. The choice of one set or another only becomes important when either try-
ing to described some basic intrinsic properties of the system that are better captured with a given set,
or when approximating a strain-energy function within a given space of functions. The question is then:
what is the choice of invariants that best captures the behaviour of a subject material? Here, we provide a
systematic method to obtain invariants that generalise the classical ones and that can be tuned to match
pseudo-universal relationships in simple deformations, independently of the specific form of the strain-energy
function.

2. Generalised invariants

If we are agnostic about the choice of invariants, we can introduce a set of invariants that depend on one
parameter and choose the parameter judiciously when needed. Therefore, to bridge between the description
in terms of {Iy, I, I3} and {i1, 2,43}, we introduce the set:

To = M)+ 25 + 7S, (8)
T-a =M "+ A"+ A3% (9)
Ko = ATASAS, (10)

where a # 0. It should be clear that {J,, J-a,Kq} forms a complete set and that the invariants {I1, I, I3}
and {i1,12,43} are recovered for & = 2 and o = 1, respectively.

We note that the generalised invariant 7, has implicitly been used in the literature. For instance, the
celebrated model of Ogden (1972):

W= E % (A9 4 AY7 4257 —3) | (11)
J
Jj=1
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can be written as:

W= (., -3). (12)

In Ogden (1972), a satisfactory agreement with the data for incompressible natural rubber was obtained on
using n = 3, with a; = 1.3, ap = 5 and a3 = —2.! Similarly, in a recent work by Anssari-Benam (2023), a
non-separable parent (principal) stretches-based model was proposed of the form:

3 (n; — 1) 1 e AT £ AY 42— 3N
— N9 N | — (2 i i_3)_1 1
v § : 2n; 197 [zaj\fj(nj—1)(Al AN ) n( 33N, - (13)
=1

where A\;A2A3 = 1 to enforce the condition of incompressibility, u; are stress-like, and N;, n;, and «; are
dimensionless, model parameters subjected to n;, N; € R*, and o; € R. With j = 1, this model recovers the
one-term Ogden model when N — oo. It is also parent to other models found in the literature, including the
generalised Gent (1996) model (proposed by Murphy, 2006) when n — oo (the special case a = 2 recovers
exactly the Gent model).

Thus far we have merely stipulated that we can reformulate a strain-energy function W in terms of
different deformation variables, including the generalised set of invariants in Eqs. (8) to (10). The advantage
of using one or another only becomes clear when we consider reduced models.

3. Reduced models

We restrict our attention to the particular but important case of incompressible isotropic elasticity. In
this case, the three invariants {Iy, Is, I3} can be rewritten as:

L=MN+X+)2, L=\2+N%2+)7, (14)

with I3 = AA30\%2 = 1. Any strain-energy function W expressed in terms of the (principal) invariants;
i.e., Winy = Winy (11, I2) where the subscript ‘inv’ denotes invariants, may also be easily expressed in the
form Wpys = Wps (A1, A2, A3), and conversely, any W = Wiy, (A1, A2, A3) function enjoying symmetry may be
re-written in terms of I; and I using the relationship given by Rivlin and Sawyers (1976):

1 1
A= —, |1 +24/(I?-3I - 2mi) |, i=1,2,3, 15
T3\ 1+ 2y R 8D cos |5 (ot 2mi)| (15)
where:
2I3 - 91,1, + 27
¢ =cos™* lll23/2 (16)
2(I?-315)

Since every complete set of invariants is always in a one-to-one correspondence with the principal stretches, a
similar equivalent representation for any given set is always possible. This equivalence, however, is only valid
when we consider a complete set of invariants. It is, often convenient to consider strain-energy functions
that depend on a reduced set of invariants. In that case, the choice of the invariant(s) becomes important,
and the ensuing mathematical and modelling implications of the considered class of models in capturing the
true deformation of a given material must be analysed and understood.

1We note that only two of the three invariants used there are independent in the isochoric space. This means that there
may be some redundancy in the fitting procedure therein.



A paradigm of this reduced functional dependency may perhaps be best represented by the so called
generalised neo-Hookean, or first-invariant, materials with the strain-energy function given as a function of
I; ony, that is W = W (I;). Another class of models (and in some sense complementary to the foregoing)
are the second-invariant models recently proposed by Kuhl and Goriely (2024), which depend exclusively
on the second principal invariant Iy counterpart, i.e., W (I3). These reduced models enjoy several attractive
features. For example, first-invariant models possess a certain mathematical simplicity since they are easy to
apply and implement when modelling a single stress or strain component, as is the case in uniaxial extension
or simple shear deformations. For such deformations, they provide, at least to a first approximation, a
close correlation with the data. Additionally, they may also be connected with some structural features,
e.g., statistical average-stretch network models have a strain energy function of this form (Beatty, 2003).
Similarly, the second-invariant models have a certain mathematical simplicity while playing a role in better
understanding the complex material behaviours such as those exhibited by soft biological tissues (see Kuhl
and Goriely, 2024). However, it is also well known that when modelling the three dimensional deformation of
soft materials, such as in the case of biaxial deformation or when analysing the normal stresses accompanying
shear, the fact that either of the invariants is missing is a clear deficiency; a problem shared with any such
model with an incomplete dependency on the full set of invariants (see, e.g., Horgan and Saccomandi, 1999;
Saccomandi, 2001; Wineman, 2005; and Horgan and Smayda, 2012).

A new class of reduced models may be constructed by using the general invariants given in Eqgs. (8) to
(10). Before reduction, the general form of a model based on those general invariants is:

W =W (JTa, T-a,Ka)- (17)

For incompressible materials, K, = 1, and we restrict our attention to models that depend only on 7, to
define general-invariant models as those that only depend on J,:

We see that these general-invariant models bridge the first- and second-invariant models which are obtained
by fixing o = 2, and a = —2, respectively. Here, « is a constitutive parameter which remains to be

determined from the experimental data so that the model suitably captures the deformation behaviour of
a given material. We observe that the one-term form of the Ogden model in Eq. (11); W = u(J, — 3)/a,
and the one-term expansion of the parent model in Eq. (13) of the form:

3(n—1) 1 o — 3N
W=—,—nN 3N(n—1)(‘70‘_3)ln<3—3N>]’ (19)

both belong to the class of general-invariant models.

Separate from the geometric interpretation of the classical principal invariants Iy, Is and I3 (Kearsley,
1989), the appearance of these invariants in a strain-energy function is often a result of particular kinematic
assumptions. For example, in average chain models, the existence of Iy is based on the assumption of
the affine deformation of chains (Beatty, 2003), and I» stems from the consideration of a topological tube
constraint around the chains (Fried, 2002; Khiém and Itskov, 2016; Anssari-Benam et al., 2021). However,
both these assumptions are mathematical idealisation, and in reality, the mechanics of the deformation of
the chains may not follow either of the assumed kinematic scenarios. This possibility further justifies the
introduction of the generalised invariant J,. Therefore, the general-invariant strain-energy function W (7,)
significantly generalises the classical models that are based on only a single invariant, opening a new horizon
with great potential for consideration of this type of constitutive equations.

A challenge, however, that arises when considering « as a constitutive parameter is that the fitting of
such a parameter is highly nonlinear and as such it may introduce the problems discussed by Ogden et al.
(2004), including the non-uniqueness of the optimal set of parameters and issues related to the convergence
of the numerical methods. These problems may be overcome by a two-step process where we first obtain the
exponent o and then a functional form of W (7). The key in this task is the existence of pseudo-universal
relationships, independent of W. Using these relationships, the first step is to quantify the exponent a from
basic experimental deformation data, independently from the choice of W. Once the exponent is known,
the second step is to use classical methods to fit data with the generalised-invariant model.
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4. Pseudo-universal relationships

For incompressible isotropic materials, the representation formula linking the Cauchy stress tensor T to
the strain-energy function reads:
T=—pIl+2W;B-2W,B™', (20)

where W, and W5 are the partial derivatives of the classical principal invariants-based model, W (I3, I2),
with respect to I; and I, respectively. In terms of 7 and using the chain rule, the representation formula
may be recast as:

)
T=-pl+2W' (B—B—1> , (21)

with the prime denoting the partial derivative of W (J) with respect to J, and where for simplicity, we
have dropped the dependency notation of 7 on a.
Using the incompressibility condition we can write the invariant J as:

=A¢ +AS + 22
T =AF+ A5 + g (22)
from which, we obtain:
0F  aXPA3 M= AN A2 - A0 AT A (AT - )]
oI 2N -1 (3N - 1) (0 - 23) ’
(23)
0T  aXIA3 ATASTE = AGATTE - ATOTEATE (A2 - A3) + AT — 23]
Ol 2N -1 (M - 1) (02 = A3) ’
subject to the condition:
(NEA3 - 1) (A28~ 1) (%~ 3) #0. (24)

From the (23) we see that when o = 2 we have 0J/0Is = 0, and when o« = —2 we get 0J/0I; = 0, as
expected. The special cases when (24) is not satisfied will be discussed later.

The next step is to specialise the representation formula in (21), using the relationships in (23), for the
particular in-plane deformations regularly employed in experiments to characterise the mechanical behaviour
of soft materials (see Mihai and Goriely (2017) for an overview).

4.1. General biaxial deformation

An incompressible biaxial deformation is a homogeneous deformation defined by the following kinematics:
=M X1, w2=XXs, z3=(\l) ' X;. (25)

Accordingly, using the representation formula in(21), the Cauchy stress is diagonal, T = diag(7y,T»,T3).
With the assumption of plane stress T3 = 0, the remaining principal components of the Cauchy stress are:

(0T o 0T,

Ty =2W' (J) a—h()\f—/\lﬂf)—a—b()\l?—/\hi) , (26)
kX g 0T, ]

Ty =2W'(7) | g (5 = A7 0%) = 5= (0" = AT X) | (27)



By taking the ratio of these two equations, we can eliminate the dependence on the strain-energy function
W to obtain the pseudo-universal relationship:

0T ooy 0T, _
Ry T AT g, O AN (25)
Q) = —— =0. 28
T, 0J N
a—ll(Ag—/\f)\QQ)—a—b()\QQ—)\%)\%)

This relationship, while independent of the choice of W, is a function of the constitutive parameter c.
Therefore, it is a pseudo-universal relationship rather than a wniversal relationship. In other words, for
any fixed value of a, Eq. (28) is a universal relationship. For instance, the case R (2) and R (—2) have
been previously described by Destrade et al. (2017) and Kuhl and Goriely (2024), respectively. Universal
relationships are usually determined from coaxiality of T and B; i.e., TB = BT. The pseudo-universal
relationship R («), however, was obtained by considering the principal stresses and stretches following a
general method first described by Pucci and Saccomandi (1997); see also Saccomandi and Vergori (2019) for
the application to other classes of materials.

The substitution of the relationships in Eq. (23) into Eq. (28) leads to the following explicit pseudo-
universal relationship for general biaxial deformations:

(ATAS = AZAS + ATT2AG + ATOP2AGTO — AJeAGH2 — AT PG — A2+ 02) (AT A3-1)

R o) = .
(@) (“ATTONZT2 L ATTENZOTE L MG A3 — M AL+ ATT2 A2 A A2 A + A2) (A2 AS — 1)

(29)

This expression may seem lengthy but it can easily be utilised, since the values of A\; and A9 are known from
experiments and therefore the computation of « is achieved by the standard correlation method.

Now let us recall the condition (24). One of the scenarios in which this condition is violated is under
equi-biaxial deformation (A\; = A2). In the limit A\; — Ao, we have T} — T5 and the relationship in (28)
is identically satisfied. Therefore, in this case, the pseudo-universal relationship (28) does not provide any
information on the exponent .. Another case for which the condition (24) is not satisfied is under uniaxial
deformation, with the following kinematics:

1 1
— X5, x3=—
\/X 2 3 \/X

Again, the pseudo-universal relationship (28) does not provide any information about «, since the only non-
zero component of stress is T7. Hence, we conclude that uniaxial data cannot be used to fix the exponent «
through the pseudo-universal relationship.

I :AXl, Ty = Xg. (30)

4.2. Pure shear deformation

Another typical deformation used in characterising the mechanical behaviour of rubber-like materials is
pure shear:

M=A, X=1, X=A1. (31)
In this case, (28) simplifies to:
T
R(a)=—-1-\*=0. (32)
T

This is a conveniently simple and compact relationship that can be used together with experimental pure
shear data to determine the value of . Note that we can re-write this last expression as:

Ty
In <T2 1) =aln()), (33)

which gives a simple linear relationship to fit between In [(T} /T 1] and In A.



4.8. Simple shear deformation

Simple shear deformation is another classical test used to characterise the mechanical behaviour of soft
solids. It is given by:
r1=X1 + kX2, w2=Xo, z3=Xj3, (34)

where k quantifies the amount of shear. Subject to the boundary condition T33 = 0, the remaining compo-
nents of the Cauchy stress tensor under simple shear are:

oTJ

_ 9 2
T = 8]1W (J)k*,
_ 0T ! 2
T22——6712W (J) kK, (35)
oT 0T\ .,
Tu:(@h—’_@[z)w(j)ﬁ’

where we note I; = I, = 3+x2. From these relationships, Rivlin’s classical universal relationship T} —The =
kT15 is obtained, which generalises to the new pseudo-universal relationship as follows:

_Tu  0J/onL _o, (36)

R(a) =7+ 57708 ~

with 0F /08I and 0J /0I5 given by (23). Further, in simple shear deformation, the principal stretches Ay
and Ay are directly related to k:

AT+ —, da=At=— 1+ —, N=1. (37)

Hence, after simplification, we obtain:

K K244 ¢ K VK244 ¢
T (K— /12—|—4) <—+> —(/@4—\//{24—4) <2—|—> +2VkZ2+4
11

2 2 2
22 /"2 1 4 o 2.4 @
(f-c+ m2+4) (—;+'€2+> —(Ii—\/@) <;+'€2+> —2V/k2 +4

This pseudo-universal relationship depends only on «, as x is measured or controlled in experiments. There-
fore, by correlating this relationship with the data {71 /T2, £}, it is straightforward to obtain «. However,
we note that in practice, it may be difficult to obtain T7; and T3 experimentally. It is also observed from
(38) that when o = 2, i.e., in the case of a first-invariant material, we obtain the well-known universal result
T52 = 0, as noted by Destrade et al. (2015) in the context of modelling brain tissue shearing.

4.4. Simple torsion deformation

The previous cases all belonged to the class of homogeneous deformations. It is also possible to derive
such pseudo-universal relationships for inhomogeneous deformations. A typical example is the case of simple
torsion of a long circular cylinder of radius Ry:

r=R, 0=0+1Z, z=2, (39)



where 7 is the twist per unit length. From the equilibrium condition divT = 0 in direction e, we obtain
the pressure as:

Ry (9._7
p(B) =7 [ W () Grdr. (40)
R 1
The non-zero stress components will therefore be given by:
TT’I‘ =D,
0
Tog = —2p + 27 R*W' (J) %,
1
41)
P (
T..=—2p—272R*W' (J) 8Tj’
2
oJ o0J
T.g=2TRW’ —+ 1.
0 TRW'(J) <8Il+612>

The usual universal relationship related to the coaxiality of T and B holds: Tyg — 1., = TRTp,. By using
the components of the Cauchy stress in (41), we obtain a new pseudo-universal relationship as:

N4 NS
%(TQO - QTT’I‘) + 87.[1

Again, this relation is independent of the choice of the strain-energy function W as it only depends on «.
However, in practice, this relationship is not helpful since stresses cannot be easily measured. Instead, in a
typical experiment, we have access to the total moment M and the total axial force N, given by:

(T, —2T,,) = 0. (42)

Ro 0F 0J
_ / 3
M =A4rT ; W' (J) (8[1+812>R dR,

(43)

o 107 0J
42 / : 3
N = —dnr ; W' (T) (28[1+ 312) R’°dR.

Note that for the simple torsion deformation, the principal stretches \; are given by (Horgan and Murphy,
2023):

>\1=%<k+\/4+k2) : Agz)\flzé(—k—k\ﬁl—}—k?) . As=1, (44)

where k£ = R7. It follows, after some manipulation and simplification, that:

EoVEE+4\ [k JVEE+a\©
oJ 0T 2 2 2 2 (45)
_—t —=— ,
8[1 612 @ 2k,/k2+4
and:
107 8J 3a 2 VEZ +4 ko ViZ14)
et = ——— | — VR A+ |k —— | | s+ ——
2 014 ol S8k2Vk?2+4 3 3 2 2

(46)

ViEZ1 4\ [k VEEr4\©
(e



These two relationships are clearly only a function of «, since k is experimentally known. Therefore, one
possibility to obtain a pseudo-universal relationship involving « is by taking the ratio of M and A/, in which
case W' is eliminated. Accordingly, if we consider the one-term Ogden model W = u(J — 3)/a we get:

Ro
M=47r7'ﬁ/ <8J+8J>R3dRa
0

« 6711 (9[2
(47)
Ro
1 109 0J
— 42 -~ + = | R®dR.
N WT a/o (26[1+8]2 R R
By defining I(«) as:
Bo [0 0F 3
—+ — d
/0 (811 T RO
Io) = — , (48)
o (10 0J
-—+ _— | R*dR
/0 (2 ol 8[2)

d in vi f the f i ions f 0\7+3.7 d 15'j+5\7 it is clear that I will onl
and in view of the foregoing expressions for | - .. oL an 5oL " oL, )’ it is clear that T will only
be a function of o, and we thus arrive at the following special case of a pseudo-universal relationship:

M I
o 49
NTTr (49)

This relationship is a pseudo-universal one since it only depends on «; however, only for the considered
case of the one-term Ogden model. We remark that we have not yet found other strain-energy functions to
deduce a pseudo-universal relationship from the global quantities M and N.

5. A two-step fitting method

We can now use the pseudo-universal relationships presented in Section 4 to obtain a suitable strain-
energy function W that only depends on a single invariant. We assume that we have a suitable set of data,
that is either biaxial, pure shear, or simple torsion data. The goal is to find a strain-energy function W (7,)
that best fits with data. To do this, we first need to identify the exponent o and then the functional form
W(J). We proceed in two steps:

First step: the exponent. Given the dataset, we create the combination of strains and stresses that
appear in the corresponding pseudo-universal relationship, and denote them symbolically as the strain data
x = {x;,i = 1,...,N} and stress data y = {y;,# = 1,...,N}. For each point we compute the residual

N
ri = R(z;,y:; ). Then, we find a by minimising R = 3 r2. The result of this step is the exponent that

i=
best captures the universal character of the data, independently of the functional choice of the strain-energy
function.

We note that this step can be used to check whether a first- or second-invariant model is suitable. Indeed,
by obtaining the exponent « via fitting the pseudo-universal relationships against the related experimental
data, we can identify whether a pre-assumed first-invariant model W (1) or a second invariant-only coun-
terpart W (I2) model is the correct class of functions to describe the deformation of the given specimen. If
the best fits of the pseudo-universal relationships to the data are obtained via values of « is close to 2 or -2,
then the first- or second- invariant models may be deemed appropriate for those datasets.



Second step: the strain-energy function. Once the exponent « is known, we can fix it and fit the
strain energy function W (J) to the full deformation data. An advantage is that the function W now does
not depend on «, which greatly simplifies the fitting process and for which there are plenty of methods.

This two-step process not only facilitates a better likelihood of achieving a unique fit by fixing one pa-
rameter that contributes to the nonlinearity of the optimisation (as the exponent of \); see Ogden et al.
(2004) for a detailed elaboration on the sources of non-uniqueness in problems of nonlinear optimisation,
but also streamlines the process of fitting the model to the deformation data by reducing the number of
model parameters left to be identified.

5.1. First step: finding the generalised invariant for experimental data

Next we consider the datasets of Jones and Treloar (1975) and Fukahori and Seki (1992) that provide
pure shear deformation data, and Kawabata et al. (1981) for both biaxial and pure shear deformations. For
the fitting process of W, we will use the one-term expansion of the model by Anssari-Benam (2023) given
in Eq. (19), and that of the Ogden model.

5.1.1. Fxample 1: pure shear data

The first example is based on data from Jones and Treloar (1975), where they report on the two compo-
nents of stress, in our notation 77 and 75, in pure shear deformation of samples made of a rubber material
(see Table Al).

On fitting the pseudo-universal relationship (33) to the data, we easily obtain the exponent « for these
specimens. The plot in Fig. 1 demonstrates the result, with the obtained value of @ = 2.61 (all numerical
values are given to two decimal places). For comparison, we also show in Fig. 1 the predicition given by
when « = 2; i.e., a generalised neo-Hookean model. That predicition is given by a dotted red line. Notable
deviations from the data are observed at both small and higher ranges of deformation when a = 2.

The choice o = —2 gives similarly poor results (not shown).
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O  Pure Shear Data (Jones and Treloar)
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Fig. 1. Correlating the pseudo-universal relationship for pure shear in Eq. (33) with the data from Jones and Treloar (1975).
The continuous blue line represents the best fit between the two with @ = 2.61. The dotted red line is the generalised neo-
Hookean model; i.e., & = 2. See the online version for the plots in colour.

Next, we consider the canonical dataset of Kawabata et al. (1981) for isoprene rubber vulcanizates (see
the original work for the tabulated numerical datapoints). The fit of the pseudo-universal relationship in
Eq. (33) to the pure shear deformation data of Kawabata et al. (1981) gives o = 1.31 with R? value in
excess of 0.99. The resulting correlation is shown in Fig. 2. Again, the generalised neo-Hookean model is
observed to provide an inadequate fit.
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O Pure Shear Data (Kawabata et al.)
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Fig. 2. Correlating the pseudo-universal relationship for pure shear in Eq. (33) with the data from Kawabata et al. (1981).
The blue line represents the best fit (« = 1.31). The dotted red line is the generalised neo-Hookean model (a = 2). See the
online version for the plots in colour.

The final example we consider here is the dataset due to Fukahori and Seki (1992), with the reported
components of stress, 77 and T», in pure shear deformation of a carbon black reinforced natural rubber
vulcanizate specimen (see Table A2). The plot in Fig. 3 shows the best fit between the pseudo-universal
relationship (33) and the data, with the identified value of o = 1.88. Again, the dotted red line in the plot
is the prediction of the generalised neo-Hookean model. We note that while a good fit is obtained with
the data at smaller ranges of deformation when considering o = 2, there is a notable deviation for larger
deformations.

12



3.5 ~

O  Pure Shear Data (Fukahori and Seki) e
s
3 .
a=188 . 0
P
’
2.5 A —r-aF2 / ¢
Z
’
— 2 A _Ed R?=0.99,
| 7
s
= . s,
= 151 -
/
/
/
Z
1 p)
Y/
P
05 - o
0 CJ T T T T T T T T 1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

In (1)

Fig. 3. Correlating the pseudo-universal relationship for pure shear in Eq. (33) with the data from Fukahori and Seki (1992).
The continuous blue line is the best fit with & = 1.88. The dotted red line is the generalised neo-Hookean model (o = 2). See
the online version for the plots in colour.

5.1.2. Example 2: biazial data

To consider the application of the pseudo-universal relationship for biaxial deformation given by Eq.
(29), we use the various biaxial deformation paths; i.e., various (A1, A2) pairs, given by Jones and Treloar
(1975) and Kawabata et al. (1981). Starting with the former, we fit the pseudo-universal relationship (29)
with the data for the four biaxial deformation paths provided in that study, namely for when Ay = 1.502,
1.984, 2.295 and 2.623, individually to each dataset (see Table A3 for the tabulated numerical datapoints).
The results are shown in panels (a) to (d) of Fig. 4.
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Fig. 4. Correlation between the pseudo-universal relationship for biaxial deformation in Eq. (29) and the data from Jones
and Treloar (1975): Panels (a) to (d) represent the best fit for various biaxial deformation paths; A2 = 1.502, 1.984, 2.295 and
2.623, respectively. Note that the axes scales are different in each panel.

It is interesting to note that even by fitting independently the four deformation paths to the pseudo-
universal relationship for biaxial deformation in Eq. (29), the values of « are remarkably close to each other,
only varying between 2.52 to 2.55. Moreover, recall that the identified value of « for these specimens on
using the pseudo-universal relationship in Eq. (33) for pure shear deformation was also 2.57; see Fig. 1.

We next consider the biaxial deformation dataset of Kawabata et al. (1981). We choose three different
deformation paths reported therein, and fit the pseudo-universal relationhip (29) to the data for each path,
individually. The results are shown in panels (a) to (c) of Fig. 5.
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Fig. 5. Correlation between the pseudo-universal relationship for biaxial deformation in Eq. (29) and the data from Kawabata
et al. (1981): Panels (a) to (c) represent the best fit for various biaxial deformation paths; 1, 2 and 3, respectively. Panels on
the left are the plots in direction 1 (A1), while the right-hand side panels are those in direction 2 (A2). Note that the axes
scales are different. See the online version for the plots in colour.

Similar to the observations regarding the biaxial data of Jones and Treloar (1975), we note again the
remarkably close identified values of a here too, varying only between 1.30 to 1.32, recalling that the
obtained value of « for these specimens on using the pseudo-universal relationship in Eq. (33) for pure shear
deformation was also 1.31; see Fig. 2. These results suggest that the identified values of « in this approach
are generic and represent some underlying intrinsic property of the material, as they are reproducibly found
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5.2. Second step: fitting the strain-energy function

The previous examples demonstrated how we can obtain the exponent « from data. Now that those
exponents are fixed for each datasets, we can find a suitable functional form for the strain-energy function
W to fit with the data. We focus on two possible choices: the classical one-term Ogden model and the
parent model given by Eq. (19). We fit these two strain energy functions against the uniaxial deformation
datasets of Jones and Treloar (1975), Kawabata et al. (1981) and Fukahori and Seki (1992), for which the
values of exponent a were quantified in the previous section. We keep those values of « fixed in our fitting
with the data here. Accordingly, for uniaxial deformation, the ensuing 73,,,; — A relationships of both models

are:
1 >

Tuni o8 = A% —
(Tuni) ™ = ( Y

[} —a/2
o A® 42X /3nN<a 1)

Tuni = a5 -
2n A +2\"2/2 3N /2

where the superscript ‘og’ in Eq. (50); denotes the relationship pertaining to the Ogden model. These
relationships are fitted with the uniaxial data of Jones and Treloar (1975), Kawabata et al. (1981) and
Fukahori and Seki (1992) (data in Appendix A or in the original study). Note that for these datasets, we
use values of a = 2.55, 1.88 and 1.31, respectively, as avearge values of « obtained from fitting the pseudo-
universal relationships for biaxial and pure shear deformations with the respective datasets, presented in the
previous section. The fitting results are shown in Fig. 6. The results highlight that: (i) the identified values
of « using the pseudo-universal relationships provide a good fit with the data; and (ii) the functional choice
of the model still plays an important role in obtaining a good fit, as the Ogden model provides notably less
favourable fits.
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Fig. 6. Modelling results on fitting the Ogden model (red line) and that of Eq. (19) to the uniaxial deformation data of: (a)
Jones and Treloar (1975) with the identified value of o using the pseudo-universal relationship as oo = 2.55 [-]. The obtained
model parameter value(s) for the Ogden model is p = 0.23 [MPa], and for the model in Eq. (19) are: p = 0.06 [MPa], N = 0.62
[-] and n = 0.35 [-]; (b) Kawabata et al. (1981) with the identified value of « using the pseudo-universal relationship as o = 1.31
[-]. The obtained model parameter value(s) for the Ogden model is p = 0.74 [MPal, and for the model in Eq. (19) are: u = 0.77
[MPa], N = 4.74 [-] and n = 4.21 [-]; and (c) Fukahori and Seki (1992) with the identified value of « using the pseudo-universal
relationship as o = 1.88 [-]. The obtained model parameter value(s) for the Ogden model is p = 1.19 [MPa], and for the model
in Eq. (19) are: p = 0.62 [MPa], N = 11.325 [-] and n = 19.18 [-]. Note that for a better clarity of presentation, the coordinate
axes in the panels are not to the same scale. See the online version for plots in colour.

6. Concluding remarks

The central idea of this work was to identify the best generalised invariant 7, so that a material can easily
be described by a strain-energy function of a single argument W = W (7,). Remarkably, our generalised
invariant supports pseudo-universal relationships. In turn, these relationships can be used to find the best
possible value of a without prescribing the functional form of W.

The main practical implications of these new pseudo-universal relationships, showcased in Section 4, are:
(i) the application of the pseudo-universal relationships to experimental data will help a priori fixing the
exponent of the principal stretches, and thereby identifying the appropriate class of models that may be
suitable for modelling the deformation of the given specimen/dataset; and (ii) the constitutive parameter
« can be quantified a priori before choosing a model W. Hence, our method has two main advantages: (i)
it will reduce the likelihood of the non-uniqueness of the obtained fits and the identified model parameter
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values in the process of fitting; and (ii) it will streamline the optimisation process, as at least one constitutive
parameter («) does not require to be included in the optimisation process.

Another important observation is the remarkable fact that values of the exponent a obtained from
different deformation datasets of a specimen are close to each other, suggesting that the exponent o captures
a generic intrinsic feature of the microstructure. To further investigate this finding, we should extend this
modelling exercise to datasets with multiaxial deformations (i.e., not just the uniaxial deformation) and use
pre-determined values of « obtained from the pseudo-universal relationships.

On identifying the value of the exponent «, and thereby informing the choice of a suitable strain energy
function, it is likely (as was the case for the exemplar specimens/datasets in Section 5) that the appropriate
class of models to be considered for the finite deformation of soft materials may be that of the form W (7).
The results in Section 5.2 indicate that in this class of models the choice of the functional form of the model
still remains an important step. The seminal Ogden model, as an archetypical example of models in this class,
appeared to run into difficulty in capturing the deformation behaviour of the considered specimens with a
single monomial invariant 7, whereas the parent model given by Eq. (19) captured the datasets favourably
with the same monomial invariant 7. This model is based on a higher-order rational approximation than
most existing models (see Anssari-Benam, 2021). As pointed out by Destrade et al. (2017), constructing
strain-energy functions based on higher order rational approximants may open up the possibility of a new
class of models whose functional forms may accommodate a more generalised form of the invariant 7.

Our approach also raises the possibility of looking at a large set of different strain-energy functions using
automatic model discovery through machine learning as recently proposed by Linka and Kuhl (2023), Linka
et al. (2023a; 2023b), Martonova et al. (2024) and Peirlinck et al. (2024). Such an investigation is likely to
help bring this new method to the systematic study of soft tissues and other practical applications.

Acknowledgment The inception and development of this work happened during a visiting professorship
programme generously funded by the Leverhulme Trust to AAB, through the grant VP1-2023-002. In par-
ticular, the modelling aspect of the work was facilitated by the procurement of computational equipment
kindly remunerated by the Trust.

Declaration of Competing Interest The authors have no competing interests to declare.

Data Availability The numerical values of the experimental datapoints used in this work have been pro-
vided in Tables A1 and A2 of Appendix A, and in Kawabata et al. (1981), as indicated in the manuscript.

18



Appendix A Tabulated numerical datapoints of the datasets used in this work

Table A1l — Numerical datapoints for the uniaxial and pure shear deformations of the rubber specimens from Jones and Treloar
(1975).

Uniaxial deformation Pure shear deformation
Nws ) Tui MP] | Al (), MPa] (), [MPa)
1 0 1 0 0
1.02 0.04 1.05 0.105 0.04
1.04 0.07 1.10 0.21 0.08
1.08 0.14 1.15 0.31 0.12
1.13 0.20 1.20 0.42 0.16
1.17; 0.25 1.30 0.66 0.21
1.31 0.44 1.40 0.92 0.25
1.53 0.755 1.50 1.215 0.29
1.71 1.00 1.60 1.53 0.33
1.96 1.38 1.70 1.88 0.36
2.205 1.75 1.80 2.26 0.39
2.35 2.03 1.90 2.68 0.41
2.47 2.28 2.00 3.14 0.43
2.615 2.55 2.10 3.65 0.455
2.20 4.215 0.475
2.30 4.825 0.49
2.40 5.48 0.51
2.50 6.18 0.53
2.60 6.93 0.55
2.70 7.725 0.56
2.80 8.56 0.58
2.85 9.01 0.59
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Table A2 — Numerical datapoints for the uniaxial and pure shear deformations of carbon black reinforced natural rubber
vulcanizates due to Fukahori and Seki (1992).

Uniaxial deformation Pure shear deformation
Newi ] Tuns MPa] | Al (T), MPa] (Tj), [MPa)

0.30 -1.49 1 0 0
0.405 -1.245 1.255 0.53 0.19
0.49 -0.87 1.48 0.97 0.31
0.585 -0.67 1.745 1.44 0.385
0.69 -0.47 2.00 2.00 0.44
0.80 -0.315 2.275 2.71 0.48
0.91 -0.13 2.53 3.55 0.54
1.00 0 2.80 4.64 0.58
1.23 0.40 3.06 6.00 0.615
1.505 0.81 3.31 7.775 0.71
1.775 1.27 3.57 9.88 0.79
2.045 1.90 4.10 16.00 1.04
2.585 3.42 4.63 24.56 1.365
3.10 5.87 5.00 32.885 1.67
3.65 9.64

4.19 15.41

4.73 23.75

5.00 29.285
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Table A3 — Numerical datapoints for the biaxial deformation of rubber specimens due to Jones and Treloar (1975), for four

biaxial deformation paths.

Ay = 1.502 Ay = 1.984 Ao = 2.295 A = 2.623
M ] Ti[MPa] Ty [MPa] | A [] 7Ti[MPa] Ty [MPa] | A [] Ty [MPa] T, [MPa] | A [] Ti[MPa] T, [MPal
0.82 0 1.06 0.71 0 2.82 0.66 0 4.45 0.62 0 6.79
0.85 0.05 1.10 0.75 0.05 2.88 0.70 0.05 4.50 0.65 0.035 6.85
0.90 0.13 1.15 0.80 0.12 2.94 0.75 0.11 4.56 0.70 0.095 6.93
0.95 0.215 1.20 0.85 0.19 3.00 0.80 0.18 461 0.75 0.16 7.015
1.00 0.31 1.23; 0.90 0.27 3.045 0.85 0.25 4,665 0.80 0.23 7.09
1.10 0.50 1.305 0.95 0.36 3.09 0.90 0.33 471 0.85 0.31 7.16
1.20 0.715 1.365 1.00 0.45 3.13 0.95 0.42 476 0.90 0.39 7.22
1.30 0.96 1.41 1.10 0.65 3.21 1.00 0.51 4.81 0.95 0.48 7.28
1.40 1.23; 1.457 1.20 0.87 3.28 1.10 0.71 4.90 1.00 0.57 7.33
1.50 1.54 1.50 1.30 1.12 3.335 1.20 0.94 4.985 1.10 0.77 7.43
1.60 1.86 1.53 1.40 1.39 3.39 1.30 1.185 5.06 1.20 1.00 7.52
1.70 2.22 1.57 1.50 1.70 3.44 1.40 1.51 5.15 1.30 1.27 7.61
1.80 2.62 1.60 1.60 2.04 3.49 1.50 1.77 5.23 1.40 1.57 7.70
1.90 3.05 1.63 1.70 2.42 3.54 1.60 2.12 5.305 1.50 1.90 7.79
2.00 3.53 1.66 1.80 2.84 3.58 1.70 2.51 5.38 1.60 2.26 7.89
2.10 4.05 1.69 1.90 3.31 3.63 1.80 2.95 5.46 1.70 2.66 7.99
2.20 4.61 1.72 2.00 3.81 3.69 1.90 3.42 5.53 1.80 3.11 8.10
2.30 5.30 1.755 2.10 4.36 3.75 2.00 3.93 5.61 1.90 3.61 8.20
2.40 5.97 1.79 2.20 4.97 3.81 2.10 4.48 5.69 2.00 417 8.32
2.50 6.73 1.82 2.30 5.66 3.89 2.20 5.08 5.76 2.10 477 8.43
2.60 7.55 1.85 2.30 5.725 5.84 2.20 5.43 8.55
2.625 7.765 1.86 2.30 6.14 8.67
2.40 6.92 8.79
2.50 7.81 8.92
2.60 8.78 9.05
2.625 9.055 9.08
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