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Abstract
Neurodegenerative diseases are associated with the assembly of specific proteins into
oligomers and fibrillar aggregates. At the brain scale, these protein assemblies can
diffuse through the brain and seed other regions, creating an autocatalytic protein pro-
gression. The growth and transport of these assemblies depend on variousmechanisms
that can be targeted therapeutically. Here, we use spatially-extended nucleation-
aggregation-fragmentation models for the dynamics of prion-like neurodegenerative
protein-spreading in the brain to study the effect of different drugs on whole-brain
Alzheimer’s disease progression.

Keywords Network model · Aggregation models · Neurodgenerative diseases ·
Alzheimer’s diseases · Proteinopathy

Mathematics Subject Classification 92-10

1 Introduction

The self-assembly of proteins into ordered linear structures plays a central role in the
normal functioning of organisms, spanning from bacteria to mammals (Fowler et al.
2006; Maji et al. 2009), with unique mechanical properties also eliciting potential in
industrial contexts (Bleem and Daggett 2017; Knowles and Mezzenga 2016). Recent
interest in protein aggregation has led to an explosion in exploratory studies across a
broad spectrum of disciplines. A particularly pressing motive for such research has
more medical origins; the undesired filamentous aggregation of proteins can have
severe repercussions on an organism’s well-being. In such contexts, aggregation is the
defining mechanism driving a cascade of pathogenic proteins characteristic of vari-
ous diseases. There are now approximately 50 disorders associated with a particular
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class of protein filaments, known as amyloids, with disparate symptoms ranging from
non-neuropathic localized amyloidosis, such as type II diabetes, to neurodegenerative
diseases such as Alzheimer’s disease (AD), Parkinson’s disease and Huntington’s dis-
ease (Chiti and Dobson 2006). Despite the diversity of pathogenic proteins involved
in these disorders (Chiti and Dobson 2017), experimental studies uncover commonal-
ities in the underlying physicochemical and biochemical disease origins. This shared
characteristic is the misfolding of normally soluble, functional peptides and proteins
and their subsequent conversion into intractable aggregates (Knowles et al. 2014).
Although only understood just decades ago neurodegenerative diseases are no longer
rare, and are rapidly becoming among the most common and debilitating medical
conditions in the modern world (Wortmann 2012). This growing problem poses sig-
nificant challenges in modern healthcare, making any progress in our understanding
of amyloid fibrillization crucial, holding implications for a wide range of debilitating
medical conditions.

The AD brain has defining pathological features of cortical amyloid plaques, com-
prising a fibrillar form of the amyloid-β protein (Aβ) as depicted in Fig. 1. It is thought
that such Aβ accumulation facilitates the subsequent cascade of neurofibrillary tan-
gles (NFTs) from aggregated tau protein (Lansbury 1996; Goedert et al. 2017). Several
hypotheses govern the deterministic modelling of protein accumulation and propaga-
tion inAD to gainmeaningful estimates of its dynamics. First, the prion-like hypothesis
(Frost and Diamond 2010; Jucker andWalker 2018; Olsson et al. 2018; Goedert 2015;
Mudher et al. 2017) broadly postulates that neurodegenerative diseases result from an
accumulation of misfolded forms of these proteins, which aggregate and contribute
to neurodegenerative pathology. In this process, disease-specific misfolded proteins
act as a template upon which healthy proteins misfold in a manner akin to prion
formation (Prusiner 1998), forming extensive chains transported through the brain
along axonal pathways. Given that aggregates of differing sizes exhibit unique trans-
port characteristics and varying toxicity levels, it is essential to monitor their spatial
and temporal evolution independently. Second, the amyloid-β hypothesis (Hardy and
Higgins 1992; Hardy and Allsop 1991; Selkoe and Hardy 2016) establishes that amy-
loidogenic protein accumulation in AD could be causative, placing Aβ central to
disease pathology with supporting experimental evidence suggesting Aβ as a primary
driver of AD (Selkoe 2001). This hypothesis has guided most AD research over the
past two decades and motivated the development of many therapeutic antibodies tar-
geting different species of the Aβ peptide (Härd and Lendel 2012). In the last decade,
15 potential therapeutics targeting the role of Aβ in AD in various ways, includ-
ing inhibition of enzymes involved in Aβ production and removal of Aβ aggregates
using antibodies, have been tested in phase III clinical trials (Karran and De Strooper
2022). However, the failure of most such drug trials and recent experimental evi-
dence has renewed scrutiny of its foundational assumptions, arguing for the possible
importance of other mechanisms. Moreover, an alternative theory, the Aβ oligomer
hypothesis, suggests that oligomers composed of small numbers of Aβ peptides are
the most relevant pathological Aβ species, with amyloid plaques perhaps serving as
a reservoir for such species (Hong et al. 2018; Walsh and Selkoe 2020). Consistent
with this, next-generation therapeutic intervention strategies targeting low molecular
weight oligomers of Aβ are showing promise (Linse et al. 2020).

123



A network aggregation model for amyloid-β dynamics… Page 3 of 36 22

Another potential driving factor of AD is the clearance of misfolded proteins, a
somewhat elusive and powerful in vivo effect which experiments in vitro fail to repli-
cate. The production of tau and Aβ peptides is a natural process related to neuronal
activity. In a healthy brain, these standard metabolic waste by-products (Rumble et al.
1989; Bacyinski et al. 2017) are removed from intracellular and extracellular com-
partments by several clearance mechanisms (Tarasoff-Conway et al. 2015; Xin et al.
2018). Waste proteins are broken down by enzymes, removed by cellular uptake,
crossing the blood-brain barrier, or effluxing to cerebrospinal fluid compartments,
eventually reaching arachnoid granulations or the lymphatic vessels. Such healthy
clearance mechanisms, working in harmony, avert the buildup of toxic Aβ plaques
and tau NFT, but their impairment or dysfunction can lead to AD pathology. The spe-
cific descriptions of in vivo clearance mechanisms remain a topic of clinical debate;
however, the kinetics enabling toxic proteins to amass into pathological aggregates
can be systematically studied in vitro and coupled to dynamic clearance mathemati-
cally to simulate the naturally therapeutic, or destabilising, effect of clearance and its
response to toxic aggregate mass.

Studies of the history of medicine reveal that significant progress in preventing and
treating a disease typically demands a deep understanding of its underlying causes
(Dobson 2013). Crucially, however, the molecular mechanisms underlying aggregate
proliferation in the complex domain of the brain are still, like clearance mechanisms,
poorly understood. The community acknowledges the need for a deeper understand-
ing of molecular processes in vivo to achieve success in therapeutic strategies (Karran
and De Strooper 2022). Moreover, as emphasised by Karran and De Strooper (2022),
clear experiments of therapeutic hypotheses have been challenging to conduct with
anti-Aβ approaches: the target is not clearly defined (amyloid plaques, Aβ oligomers,
or monomers), the mechanism by which Aβ affects cognition is unknown (direct or
indirect synaptic toxicity, induction of tau pathology, neuroinflammation, or a combi-
nation of all and other effects), sometimes failures are attributed to drug administration
at too late of a stage of neurodegeneration, and there is also evidence that amyloid
removal is faster in patients with high baseline levels further confounding a direct
comparison of antibodies (Klein et al. 2019). Mathematical modelling can contribute
to a deeper understanding of these problems and suggest new approaches. Significant
progress have been made in elucidating the molecular mechanisms that occur during
the assembly of purified protein molecules under controlled in vitro conditions. This
advance results from new experimental methods as well as better theoretical mod-
els used to analyse the resulting data. Modelling these molecular mechanisms in a
disease-relevant system, including in vivo effects such as clearance and transport at
the brain scale, would provide invaluable insights to guide the design of potential cures
for these devastating disorders.

The goal of this study is twofold. The primary focus is to develop and analyse, both
analytically and computationally, new models to study protein aggregation kinetics,
including in vivo effects such as clearance in a brain region locally, then scale up to
include transport on the human connectome. Second, we use our new in vivo aggre-
gation models to test the impact of potentially therapeutic monoclonal antibodies
and inform optimal treatment strategies to maximise toxic mass clearance. Our gen-
eral approach is to study the size distribution of Aβ42 aggregates, with parameters
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Fig. 1 The process of aggregation, from a healthy brain to an unhealthy brain with damaged clearance and
saturated in amyloid fibrils, as shown also in amyloid PET images adapted from Ten Kate et al. (2018), and
also shown in a light micrograph of Aβ plaques, and an electronmicrograph showing amass of extracellular
amyloid fibrils in an Aβ plaque at the microscopic scale, adapted from Walker and Jucker (2015)

informed by experiments in a HEPES buffer (Linse et al. 2020), both locally and
brain-wide using discrete aggregation equations (Fornari et al. 2019, 2020; Brennan
et al. 2023), finding analytical relationships where possible and solving numerically on
the brain’s connectome. The novelty of our work is exploring how the known in vitro
aggregate size dynamics and the pharmodynamic effect of drugs (Linse et al. 2020;
Mazer et al. 2023) scales up to affect the progression of neurodegenerative diseases in
a more realistic in vivo model at the brain scale, exploring a variety of clearance pro-
files reflective of treatment strategies. A primary result of interest to the computational
biology and pharmaceutical community will be to demonstrate that the non-trivial in
vivo effects of transport and clearance of oligomers are realized with relatively sim-
ple deterministic models and couplings, leading to effects with clear physiological
interpretations in neurological disease modelling. Moreover, the mathematical anal-
ysis will highlight that clearance mechanisms are crucial in destabilizing the system
towards proteopathy and potentially in restabilizing the system, with implications for
therapeutic intervention within the complex domain of the human AD brain.

2 Frommicroscopic models to brain-scale dynamics

Protein aggregation pathways are complex and involve multiple steps with distinct
rates (Meisl et al. 2017). Advancements based on chemical kinetics have produced a
deepunderstandingof the fundamentalmechanismsunderlying the formationof aggre-
gates in ideal conditions at the microscopic scale, thereby making clearer the potential
for therapeutic intervention (Frankel et al. 2019; Kundel et al. 2018). Namely, a theo-
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Fig. 2 The microscopic nucleation-aggregation-fragmentation processes and secondary pathways. The
respective rate constants of processes considered in our models are labelled, as detailed in Table 1

retical framework of the classic nucleated polymerisation theory supplemented with
secondary aggregation pathways (Cohen et al. 2011a, b, c) has been combined with
systematic in vitro experiments performed under differing conditions, such as varied
concentration or pH (Meisl et al. 2016; Yang et al. 2018), to reveal such mechanisms.

As shown in Fig. 2, it is understood that Aβ monomers misfold by seeding events or
prion-like templating (Nilsson et al. 2002; Jucker and Walker 2011, 2013), followed
by primary nucleation, which leads to the creation of a polymer of length n1 soluble
monomers. Filaments elongate and dissociate linearly fromboth endswith the addition
and removal of monomers in a reversible manner. Oligomers and fibrils of different
sizes also aggregate to form larger aggregates. Additionally, secondary pathways of
fragmentation and monomer-dependent secondary nucleation lead to the creation of
new fibril ends from pre-existing polymers.

At present, no brain-scale in vivo therapeutic intervention model accounts for the
kinetics of protein aggregation. Leading therapeutic models are in vitro models for
the impact of drugs on the aggregation process (Linse et al. 2020), or brain-wide
compartmental models that broadly depict disease development in the presence of
drugs over months but neglect the underlying kinetics of drug action (Mazer et al.
2023). We combine the aforementioned spatial and time scales, building upon insights
from the Smoluchowski-type models of Thompson et al. (2021) and Fornari et al.
(2020), which respectively capture the physiological effects of clearance and brain-
wide neuronal transport of aggregates.

Our general approach is to start with amicroscopicmodelwith parameters validated
experimentally by in vitro experiments and extend to both in vivo settings and over
the entire brain.

First, the microscopic model that we start with has been carefully calibrated in a
series of experiments. In particular, it has been shown that the main processes suffi-
cient to explain the mass increase of oligomers are linear aggregation, primary, and
secondary nucleation (Frankel et al. 2019). Similarly, it has been shown that both
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depolymerisation and fragmentation can be ignored in the first instance (Cohen et al.
2013, 2011c). Furthermore, fibril association is considered unimportant for many pro-
tein polymers, as it is likely a slow process due to detailed structural constraints (Cohen
et al. 2011a). Also, whilst there is likely variation in reaction constants with aggregate
size, we consider them to be constant, constituting ensemble-averaged quantities into
which small heterogeneities are subsumed.

Second, we extend the microscopic model to include in vivo mechanisms: the
natural production of monomers, the clearance of monomers, and a general slowing
down due to local cellular effects. This second model represents the local dynamics
of oligomers in a given brain region.

Third, we extend the model to include spatial effects at the brain scale. This is
performed by coupling different brain regions and assuming that proteins are mostly
transported through the brain along axonal pathways. This final system belongs to
the general class of network diffusion-aggregation-fragmentation models discussed
in Fornari et al. (2020). In this way, we derive an entirely mechanistic brain-wide
network model of neurodegeneration in which we simulate and optimize therapeutic
intervention.

2.1 Aminimal microscopic model

Our minimal microscopic model for protein aggregation includes the following mech-
anisms: primary heterogeneous nucleation; secondary nucleation; linear elongation.
Each aggregate of a given size is represented by a population. Let pi = pi (t) be the
concentration of aggregates of size i = 1, 2, 3, . . . . Then, the microscopic master
equations are:

dm

dt
= −2kn − 2k+mP − 2k2σ(m)m2M, (1a)

dp2
dt

= kn − 2k+mp2 + k2σ(m)m2M, (1b)

dpi
dt

= 2k+m(pi−1 − pi ), i > 2 (1c)

where

σ(m) = Km

Km + m2 , P =
∞∑

i=2

pi , M =
∞∑

i=2

i pi , (2)

where m = p1 is the concentration of monomers, nuclei are taken to be dimers p2,
and the kinetic rate constants are defined in Table 1. Here, P and M are the first two
moments of the population distribution; they represent the total number and total mass
of aggregates, respectively.

It is of interest, before we consider other effects, to understand the overall behavior
of this system. This can be easily accomplished by looking at the moment equation
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Table 1 Typical parameters for the Aβ model, shared by the authors of Linse et al. (2020)

Param Mechanism Aβ42 HEPES (Linse et al. 2020) Units

kn primary nucleation 1.6 × 10−11 Mh−1

k2 secondary nucleation 2.1 × 1014 M−2h−1

Km monomer saturation 2.3 × 10−17 M2

k+ elongation 1 × 1010 M−1h−1

m0 initial monomer c 3 × 10−6 M

HEPES refers to the buffer used for the experiments

Fig. 3 Dynamics of the microscopic minimal model based on parameters in Table 1 for various initial
monomer concentrations m0. For large variations of the initial monomer concentration, the dynamics is
saturated within hours. The dashed curves show the linear approximation (8) from which we derive an
analytical half-time τlin

obtained as a closed system for m, M and P:

dP

dt
= kn + k2 σ(m)M, (3)

dM

dt
= 2kn + 2k+mP + 2k2 σ(m)M, (4)

dm

dt
= − 2kn − 2k+mP − 2k2 σ(m)M . (5)

By construction, the total mass of the system is conserved in the in vitro model and
assuming M(0) = 0 and m(0) = m0, we have m0 = M(t) + m(t) for all time.
As shown in Fig. 3, the behavior of this system is rather simple. The toxic mass M
increase from 0 to m0 in a sigmoid-like manner. Various approximations of this curve
have been proposed and used for model validation and parameter fitting (Meisl et al.
2014; Frankel et al. 2019; Cohen et al. 2013). We observe that for large variations of
the initial concentration, the dynamics saturates within hours.
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To better understand the time scale involved in the process, we defined the halftime
τ to be the the time at which an initial unseeded system reaches half of the final
concentration M(τ ) = m0/2. To approximate τ , we assume that kn is small compared
to other rates and linearize the system (3–4) with m(t) = m0 − M(t) around M(0) =
P(0) = 0. Expanding M = εM̃ + O(ε2), P = ε P̃ + O(ε2), where kn = εk̃n , we
obtain, to first order

dP̃

dt
= kn + aM̃,

dM̃

dt
= 2kn + (b − a)P̃ + 2aM̃, (6)

where

a = k2m2
0Km

Km + m2
0

, b = 2m0k+ + k2m2
0Km

Km + m2
0

. (7)

A very good approximation of the exact solution of this linear system with unseeded
initial conditions M̃ = P̃ = 0 is obtained by neglecting the fast decaying exponential:

M(t) ≈ kn
2a

((
1 +

√
a

b

)
et(a+√

ab)t − 2

)
. (8)

The linear solution gives a reasonable estimate of the initial dynamics and is simple
enough to provide an analytical estimate of the halftime:

τlin = 1

a + √
ab

log

(√
b(am0 + 2kn)

kn(
√
a + √

b)

)
. (9)

In the range of parameters involved, we can further simplify this expression to

τlin ≈ 1√
2k+k2Kmm0

log

(
k2Kmm0

kn
+ 2

)
. (10)

This solution is valid in the limit m0 � Km , and for similar half time results given
different governing equations, see Cohen et al. (2011a, 2013).

We now turn to the variation of time scales associated with the various parameters.
We fix the initial concentration tom0 = 10−6M and systematically vary each parame-
ter over four orders of magnitude around their values given in Table 1, to study which
rate constant has the most effect on the dynamics. From (10), we see that variations in
m0, k2 or Km are equivalent as these parameters only enter as a product. As expected,
the variations due to a reduction in the primary nucleation terms are weak (and only
due to the logarithm), whereas reductions in k2 (with a log dependence divided by a
root) are faster and variations in k+ dominate (as they depend only on the square root)
(Fig. 4).

The overall conclusion is that the pure conversion process of a population of
monomers into oligomers is governed in vitro by rate constants that provide a typical
time scale of hours, even when kinetic rates are modified by orders of magnitude.
However, we know that in vivo any neurodegenerative disease evolves on time scales
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Fig. 4 Variations of halftimes τlin due to a change of each parameter of the form k → (�k)kref, around
the reference value kref given in Table 1 (and m0 = 10−6 M). Note that in this range of parameters, the
expressions (9) and (10) for τlin are indistinguishable

of years or decades. Even in the case where all kinetic rates are reduced by a factor T ,
the resulting new halftime is simply τT , which would require a factor of about 104 to
reach a time scale of a year. This apparent contradiction requires new mechanisms to
explain the dramatic slowdown of these processes.

2.2 A local model including clearance, production, and saturation

Based on our understanding of the minimal in vitro model that represents a closed-
system, we can now extend it to include effects that appear in vivo. First, based on
experimental observations in mice with prion disease (Mays et al. 2015) and in an
approach adopted previously by Thompson et al. (2021), we assume that there is a
regulation mechanism for the production of monomers such that their concentration
remains mostly constant, despite their uptake in the formation of larger structures.
Therefore, within the modelling framework, we take m0 to be either constant in time
or a given function depending on aging and other environmental factor with slow time
variation. Second, the constant monomer assumption is supplemented with a change
in the secondary nucleation term; we assume that the main autocatalytic mechanism
of secondary nucleation is saturated with respect to the total mass M (rather than m
in the initial model) and that the mass saturation constant is the same as the monomer
saturation constant, that is, KM = Km . This assumption reflects a mechanism that
restricts access to toxic mass, which is an essential consideration in the saturation of
toxic mass since it has been observed in vitro that secondary nucleation is aMichaelis-
Menten-type reaction (Dear et al. 2020). Third, it is believed that clearance is important
in both the initiation and evolution of the disease. Therefore, we assume a linear clear-
ance model with clearance parameters λi proportional to the oligomer concentration.
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Assuming, in the first instance, that clearance does not evolve in time, we have

dm

dt
= 0, (11a)

dp2
dt

= −λ2 p2 + knm
2 − 2k+mp2 + k2σ(M)m2M, (11b)

dpi
dt

= −λi pi + 2k+m(pi−1 − pi ), i > 2 (11c)

where

σ(M) = KM

KM + M2 , P =
∞∑

i=2

pi , M =
∞∑

i=2

i pi . (12)

Additionally, as we introduce in vivo effects, heterogeneous primary nucleation
on surfaces is no longer appropriate; instead, we now consider kn to represent only
homogeneous primary nucleation. We note that in experiments, the process is initi-
ated by seeding with a small amount of oligomers. If dimers are used for seeding, then
the initial conditions is simply m(0) = m0 P(0) = p2(0), M(0) = 2p2(0) and kn
can be taken to be identically vanishing in excellent approximation for kn sufficiently
small. Indeed, once the process is seeded (either through nucleation or oligomer addi-
tion), the contribution of the production term kn becomes negligible in the dynamics.
Mathematically, this approximation has the advantage to have M = P = 0 is a fixed
point of the system. Therefore, in the rest of this section, we take this point of view
and set kn = 0. Further, in the particular case where clearance is size-independent
(λi = λ > 0, i > 1), the moment equations read:

dP

dt
= −λP + k2 σ(M)m2

0M, (13a)

dM

dt
= −λM + 2k+m0P + 2k2 σ(M)m2

0M . (13b)

This system has two fixed points P1 = M1 = 0 and

P2 =
√
KM

(−λ2 + 2λk2m2
0 + 2k+k2m3

0

)

2 (k+m0 + λ)
,

M2 =
√
KM

(−λ2 + 2λk2m2
0 + 2k+k2m3

0

)

λ
, (14)

which exists only if

0 < λ < λcrit = k2m
2
0 +

√
2k2m3

0 (k2m0 + k+). (15)

We conclude that this model exhibits a transcritical bifurcation with the property of
having the zero trivial state stable for λ > λcrit and replaced by a non-vanishing
oligomer concentration for 0 < λ < λcrit as shown in Fig. 5. We observe that the
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Fig. 5 Time evolution of the oligomer toxic ratio M/m0 (red) compared to initial monomer concentration
m0/m0 (blue) in (12). The system is seeded with p2(0) = m0 × 10−4. Parameter values are given in Table
1 with kn = 0. In this case λcrit = 12705 from (15). Timescales of interest τ1 and τ2 are shown in (b) by
the black dashed curves (color figure online)

critical clearance is independent of the saturation constant KM and that the asymptotic
mass M2 scales with that constant, giving the typical size allowable local oligomer
load.

With the introduction of non-zero constant clearance λ in the system (13), there
are now two timescales associated with the dynamics: a period of growth up to the
maximum toxicmass at time τ1 ≈ 1/ν1 where ν1 = √

2k+m0−λ is the first eigenvalue
of the system (13) when linearized, and a period of decay to time τ2 whenM−M2 = ε

where ε � 1 (Fig. 5). Characteristic time scales for the amplification of the aggregate
mass are obtained numerically and displayed in Fig. 6. The impact of varying k2 and λ

on M2 can also be seen by (14). The dependencies of both timescales on clearance and
secondary nucleation are similar. Specifically, we observe that the impact of varying
clearance on the timescales and toxic load in the system is profound.

Following the lag period, toxic mass M is dominated by elongation and secondary
nucleation, up to time τ1 when the dampening effects of clearance and saturation of
secondary nucleation begin to dominate, initiating a decline in toxic mass from Mmax
to the steady state M2. The peak toxic mass Mmax, fixed point M2, and associated
timescales τ1 and τ2, decrease with increased clearance. Increased secondary nucle-
ation rates k2 has an effect of increasing Mmax and M2 and decreasing τ1 and τ2, as
expected from (14). Unless k2 is altered dramatically, lowered by one order of mag-
nitude, it has a marginal effect on lowering τ1 and τ2 with more effects in lowering
Mmax and M2.

Increasing clearance λ has a more significant impact on decreasing toxic load in
the local brain system (11) and both timescales τ1 and τ2, and thus dominates in the
preferential dampening effects at each phase of the disease cascade. Note that this
model does not capture the full disease timescales in a human brain; transport and
dynamic clearance have significant effects, as incorporated in the following sections.
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Fig. 6 Contour plot of Mmax for varying λ and k2 = k2�k, where�k varies over three orders of magnitude
from 10−1 to 102

If a steady state p∗
i for i ≥ 2 exists (i.e. if λi is below some critical clearance

threshold and M is bounded), setting (11c) to zero, it must satisfy the recurrence
relation

p∗
i = δi p

∗
i−1, δi = 2k+m0

λi + 2k+m0
, i > 2, (16)

where each recursive effect is dependent on i . Consequently, the fixed point of the
i-mer is

p∗
i = 
i p

∗
2, where 
i =

{∏i
j=3 δ j for i > 2,

1 for i = 2.
(17)

By definition,

M∗ =
∞∑

k=1

k
k p
∗
2 = 
p∗

2 (18)

where we define 
 = ∑∞
k=2 k
k . Using this in solving (11b), we obtain

p∗
2 =

√
23

√
−λ2 − 2k+m0 + k2m2

0

1000

√
λ2
2 + 2kpm0
2

. (19)
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Thus, a fixed point exists if the following three conditions are satisfied:

(C1) lim
i→∞ 
i = 0, (20)

(C2) 
 =
∞∑

k=2

k
k converges, (21)

(C3) − λ2 − 2k+m0 + k2m
2
0
 > 0 (22)

where (C1) reflects that the final concentration of aggregates must be decreasing with
i , (C2)M∞ must be bounded, and (C3) requires p∗

2 ∈ R. Followingmethods presented
in Thompson et al. (2021) we obtain the following analytical critical clearance for-
mulae dependent on the form of clearance. This case is particularly interesting since,
in the derivation of steady states, we see that a critical clearance can be established
for different forms of size-dependent clearance. Remarkably, our results suggest that,
depending on the specific size dependence, the processes of elongation and secondary
nucleation contribute to the value of the critical clearance to different degrees. An
important implication is that, depending on the specific mechanism of clearance, inhi-
bition of aggregation should target different processes to reduce the critical clearance
rate.

First considering constant clearance, as in (15), (C1–C3) are satisfied for

λ < λcrit = k2m
2
0 +

√
2k2m3

0 (k2m0 + k+). (23)

The size distribution for aggregates at equilibrium p∗
i for varying subcritical con-

stant clearance rates reveals that the relative occupation of oligomers in the region
appears invariant to clearance. Increasing clearance uniformly in the constant clear-
ance regime targets larger aggregates as seen in Fig. 7. This is consistent with Oosawa
theory (Oosawa and Asakura 1975; Oosawa 1970), which predicts that the length
distribution initially develops into a Poisson distribution in the time taken for the
monomer-polymer equilibrium to be established before relaxing over a longer time
scale into an exponential distribution (Cohen et al. 2011c, [Figure 5]). Due to the con-
stant supply of monomers, oligomer concentrations are relatively higher, reflective of
a brain region.

Considering size-dependent clearance λi , the infinite system (11) does not yield
a closed system for the moments. Still, the fixed point solution (16) enables us to
determine steady states for aggregate concentrations, subject to conditions for the
existence of such a steady state (C1)–(C3). These existence conditions also facilitate
the identification of the bifurcation point in clearance, λcrit, above which aggregation
is negligible.

First, consider clearance that increaseswith aggregate size,λi = iλ0. The biological
understanding of this case might correspond to clearance mediated by drugs with
preferential binding towards larger aggregates. In this case,

λ0,crit = k+k2m3
0 − 1

k+m0 − k2m2
0

. (24)
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Fig. 7 The analytical result for the equilibrium length distribution of p∗
i (17) in (11) is shown for various

constant clearance rates, with parameters applied from Table 1. Heightened clearance has the least impact
on oligomers

Since λi is increasing with aggregate size like λi = λ0i , this intuitively suggests that
a lower λ0 is required to avoid a diseased state.

For comparison, we consider the opposite case where clearance decreases with
aggregate size λi = λ0/i with the biological interpretation that aggregates become
more difficult to clear as they increase in size. Then, an analysis of (C1)–(C3) reveal
a critical clearance of

λ0,crit = 2a(a + 4k2m2
0)

a + k2m2
0

, (25)

which can be further simplified by again noting that a = 2k+m0 � k2m2
0, so we

obtain the approximation λ0,crit ≈ 2a.

2.3 A local model including aging and damage

As the mass of toxic proteins increases, it induces local damage that affects the proper
function of the vasculature and all clearancemechanisms (Bennett et al. 2018; Carrillo-
Mora et al. 2014; Canobbio et al. 2015; Michalicova et al. 2020). To capture these
effects, we let the clearance rates evolve in time up to a lower minimal clearance
μi , i > 1. The full system of equations now reads

dm

dt
= 0, (26a)

dp2
dt

= −λ2 p2 + knm
2 − 2k+mp2 + k2σ(M)m2M, (26b)

dpi
dt

= −λi pi + 2k+m(pi−1 − pi ), i > 2, (26c)

dλi
dt

= βi M(μi − λi ), (26d)
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with moment equations given by

dP

dt
= −

∞∑

i=2

λi pi + knm
2 + k2σ(M)m2M, (27a)

dM

dt
= −

∞∑

i=2

λi i pi + 2knm
2 + 2k+mP + 2k2σ(M)m2M . (27b)

All variables and parameters are given in Table 1, and we henceforth consider the
value and form of μi . The dynamics of this system also display a bifurcation and
requires sufficient seeding before it bifurcates to a non-trivial solution where λi → μi

as explained in Brennan et al. (2023).
Ifwe remove clearance in thismodel, it becomes equivalent to the previous (constant

clearance) system (11) leading to unbounded growth. Once clearance decays to the
basal clearance capacity associated with maximal damage, the dynamics of the system
align with those of (11). However, the system dynamics prior to the point at which
λi = μi are markedly different, as we observe sigmoidal growth in toxic mass as local
clearance is driven to the basal clearance capacity (Fig. 8).

2.4 Coupling themicroscopic model to transport

So far, we have developed a model suitable to describe the dynamics of oligomer
concentrationswithin a single region.Next,we consider a systemwithmultiple regions
of interest connected through a network with diffusive transport between different
regions. As described in Fornari et al. (2019) the network based brain modelling
approachprovides a computationally cheap approachwhilstmaintaininghigh accuracy
in reproducing histopathological data, compared to continuummodelling approaches.
The brain connectome is defined as a weighted graph G with V nodes (V for vertices)
and E edges obtained from tractography of diffusion tensor images. Specifically, the
brain network is constructed from 418 healthy human magnetic resonance images
obtained through the Human Connectome Project (McNab et al. 2013), using the
Budapest Reference Connectome v3.0 (Szalkai et al. 2017). From the tractography,
we extract the weighted adjacency matrix A and define the graph Laplacian L

Li j = −Ai j +
V∑

j=1

Ai j , i, j = 1, . . . , V . (28)

There are other possible definitions of the graph Laplacian obtained by normalizing
rows, columns, or both. However, this is the only graph Laplacian that has the property
of preserving mass during transport and ensures that no transport occurs between two
regions with the same concentration (for a detailed description and discussion see
Brennan et al. 2025).

Incorporating the assumptions specified in the previous section, kn = 0 to approx-
imate the seeded system, the truncated master equations for aggregates of size i at
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Fig. 8 Toxic mass and clearance dynamics of (26) corresponding to different uniform initial clearance λ(0)
and basal clearance capacity μ values across aggregate sizes. Different parameter regimes are displayed
relative to the critical basal clearance capacityμcrit, with the dynamics of each having distinct timescales of
invasion. In all cases,μcrit = 12705 according to (15). Alongside parameter values in Table 1,β = 1011 and
concentrations are rescaled by c = 106. Here, we do not neglect the important effects of primary nucleation,
as they are instrumental in slowly decaying clearance. The kn = 0 approximation does not approximate the
dynamics of (a) or (b) well when seeded, but it does approximate the system well if λ(0) < μcrit, shown
by the dotted curves in (d)
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node j = 1, 2, · · · , V , including axonal transport, form an infinite system of first
order ODES:

dm j

dt
= −ρ1

V∑

k=1

L jkmk, (29a)

dp2, j
dt

= −ρ2

V∑

k=1

L jk p2,k − λ2, j p2, j + knm
2
j − 2k+m j p2, j + k2σ(Mj )m

2
j M j ,

(29b)

dpi, j
dt

= −ρi

V∑

k=1

L jk pi,k − λi, j pi, j + 2k+m j (pi−1, j − pi, j ), (29c)

dλi, j
dt

= f (λi, j ), (29d)

with initial conditions

mi (0) = mi,0, pi, j (0) = pi, j,0. (30)

Here ρi is the diffusion coefficient of the i-mer taken to be small or a function of
i (Fornari et al. 2020; Bertsch et al. 2017). As before, the first two moments of the
population distribution are

Pj =
∞∑

i=2

pi, j , Mj =
∞∑

i=2

i pi, j , (31)

representing the total number and total mass concentrations of aggregates in the region
of interest (ROI) j , respectively. Taking clearance to be constant in time, the moment
equations are given by:

dMj

dt
= −

∞∑

i=2

λi, j i pi, j − ρ j

V∑

k=1

L jkMk + 2knm
2
j + 2k+m j Pj + 2k2σ(Mj )m

2
j M j ,

(32)

dPj

dt
= −

∞∑

i=2

λi, j pi, j − ρ j

V∑

k=1

L jk Pk + knm
2
j + k2σ(Mj )m

2
j M j . (33)

The order of node invasion across the brain network suggests a direct applicability
of the diagonalization results of Fornari et al. (2020) to ourmodel. In Fig. 9, we observe
immediate neighbors of the single seed node are invaded first, influenced heavily by the
diffusivity weighting along the edges emanating from this seed. Subsequently, nodes
of path length two are invaded, encompassing all nodes in the small-world network.
Nodes with the lowest connectivity, such as the frontal pole, are invaded last. Figure9
also displays the order of ROI invasion across the connectome and the corresponding
network representation.
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Fig. 9 The order of Aβ invasion of nodes on the connectome and the corresponding sagittal views of the
spread on the brain network. Subcritical initial clearance of λ(0) = 10 is uniform across nodes, and we
impose an initial seed of M(0) = m0 in the posterior cingulate, where Aβ is first observed. Here in (29),
ρ = 0.01, kn = 0, and all other parameters are shown in Table 1. The top row shows the cascade of toxic
proteins across nodes, with total toxic mass at each node normalized by the saturated concentration. For
immediate neighbors of the seed nodes, diffusivity weightings are represented by color. Nodes at a path
length of two from the seed nodes are shown by grey dashed curves, while biomarkers corresponding to
the seed nodes are shown in black (color figure online)

Fig. 10 Sagittal views of the distribution of aggregates of increasing size on the brain network at the fixed
time point t = 0.0008. Here we seed in the entorhinal cortex p2 = m0, with constant clearance λ = 103 in
(29). The difference between the top row and bottom row is constant diffusion ρ = 0.01, and size-dependent
diffusion ρ = ρ0/n

3, where n is the oligomer size, resulting in lower toxic concentrations at t = 0.0008
(see colour bar limits), but no change in the relative occupancy of aggregates

The growth of toxicmass across the connectome in this order is facilitated primarily
by the transport of nuclei. To demonstrate this, first the distribution of oligomers of
size i = 2, 4, 6 and 8, at a fixed time point, is seen in Fig. 10 (first row) given
a size-independent diffusion coefficient in (29). Aggregates spreading in travelling
waves, and total toxic mass is a propagating front as described in Putra et al. (2023).
It is observed experimentally (Nicholson et al. 2000; Goodhill 1997; Nicholson and
Syková 1998) that in vivo aggregate transport scales with size. Specifically, large fibril
assemblies do not move, and in previous models (Bertsch et al. 2017; Achdou et al.
2013) the diffusion coefficient of a soluble peptide is taken to scale as a reciprocal of
the cube of its molecular weight.

123



A network aggregation model for amyloid-β dynamics… Page 19 of 36 22

Perhaps counter-intuitively, the distinction in progression through nodes being char-
acterised by first low weight oligomers, and later by increasing aggregate sizes, is not
exacerbated by the assumption of transport scaling with size, as seen by comparing
rows in Fig. 10. The order of invasion and relative times of invasion remain the same,
but the time taken to reach higher concentrations increases. This emphasises the role
of nuclei spreading through the connectome, since local dynamics dominate over the
delivery of aggregates by diffusion. We conclude that regardless of the form of size-
dependent diffusivity, provided diffusion is small, the transport of larger aggregates
does not significantly change the brain-wide dynamics.

3 Applications to therapeutic modelling

Next, we investigate the impact of monoclonal antibodies (mAbs), a form of
immunotherapy known to influence microscopic parameters in chemical kinetic mod-
els, on the aggregation and propagation of misfolded toxic proteins. Using the local
and brain scale models derived and studied in the previous section, we analyse, repli-
cate, and propose treatment strategies on the structural connectome based on results
in vitro. Parameters extracted in vitro are scaled up to display the impacts on whole-
brain neurodegeneration to simulate treatments in a fully mechanistic model at the
whole-brain scale. Notably, FDA-approved drugs such as lecanemab, and drugs with
promising phase III trial results, such as donanemab, operate by ultimately increasing
the effectiveness of brain clearance. Thus, a model that captures the intricacies of the
brain’s endogenous clearance and the enhancement of this mechanism from drugs is
crucial.

Linse et al. (2020) found, by fixed point solution method of the coarse-grained
protein kinetic equations, the kinetic fingerprints of various mAbs. For example, using
the method described in Meisl et al. (2016), they identified that aducanumab causes
an apparent reduction of the free oligomer concentration by inhibiting the critical
molecular process, secondary nucleation, through which oligomers form. With the
highest dose of aducanumab (100 nM), corresponding to a substoichiometric molar
ratio of 0.03:1 antibody: Aβ42, there is a 69% reduction in the secondary nucleation
rate constant. With the lowest dose tested (250 pM), there is still a 39% reduction.
Thus one effect of the drug on the aggregation pathway can be expressed as a rate
constant change in the presence of aducanumab:

k̃2 = �kk2, (34)

where �k ∈ [0, 1] is dependent on the dose of the drug. Importantly, variations in k2
reduce the critical clearance for all models, as seen in Fig. 11, with implications for
disease timescales and propagation patterns as discussed in Brennan et al. (2023).

The inhibitory effect on secondary nucleation originates from the interaction of adu-
canumabwith amyloid fibrils. Linse et al. (2020) observed a low affinity for monomers
and a very high affinity (1nM) for fibrils, in agreement with previous findings (Arndt
et al. 2018). Fibrils become fully coated with aducanumab along their entire length,
effectively interfering with secondary nucleation at the fibril surface. Further, mAbs
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Fig. 11 For varying k̃2 = �kk2, the ratio of critical clearance values in the presence of drugs λ̃crit and critical
clearance associated with �k = 1 (without drugs). Results are displayed for critical clearance formulae
associated with different models, namely (11) with constant clearance λi = λ (purple), and size-dependent
clearance λi = iλ0 (blue), and λi = λ0/i (green) (color figure online)

binding to amyloid fibrils targets them for microglia-mediated removal and enhances
the clearance of plaques (Sevigny et al. 2016; Söderberg et al. 2023).

Mazer et al. (2023) model the effect of drugs solely through increased clearance in
a compartmental model; the Q-ATN model. The pharmacodynamic (PD) drug effect
of antibody-mediated plaque removal is quantified by a linear relationship between
antibody concentration and clearance. The PDmodel assumes a pseudo-first-order rate
constant for plaque removal (λdrug) that is proportional to the plasma concentration
(Cp), with an antibody-specific proportionality constant (L) given by

λdrug(Cp) = LCp. (35)

The L values were estimated by fitting the time course of mean amyloid PET data
during treatment using a non-linear least squares algorithm.

We directly substitute drug inhibited parameters into the system (11) to obtain, in
the case of aducanumab,

dm

dt
= 0, (36a)

dp2
dt

= −(λ2 + λdrug)p2 + knm
2 − 2k+mp2 + k̃2σ(M)m2M, (36b)

dpi
dt

= −(λi + λdrug)pi + 2k+m(pi−1 − pi ), i > 2 (36c)

where, as before,

σ(M) = KM

KM + M2 , P =
∞∑

i=2

pi , M =
∞∑

i=2

i pi . (37)
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Fig. 12 Unstable (dashed) and stable (solid) equilibrium solutions for total toxic mass M∞ are depicted
without drugs (red) and in the presence of aducanumab (lighter red). The presence of aducanumab initiates a
reduction in secondary nucleation to k̃2 = 0.5k2, causing the critical clearance reduces from λcrit = 12750
to λ̃crit = 8750 given by (15), and a reduction in the saturated toxic state M2 given by (14) (color figure
online)

Next, we consider the effects of aducanumab on only the kinetic parameters
expressed through the reduced secondary nucleation rate constant k̃2, identified to
be the drug’s inhibitory action on the aggregation chain. This results in a new critical
clearance, which varies with k2 according to (15) (Fig. 11), and the steepness of the
M2 fixed state according to (14). The toxic mass equilibrium is shown in Fig. 12 in the
presence of the kinetic action of aducanumab (orange) and without treatment (red). In
addition to this kinetic effect, Mazer et al. (2023) suggest that the preferential binding
of aducanumab to fibrils facilitates clearance at a rate proportional to drug concentra-
tion. Therefore, we model this effect by increasing aggregate size-specific clearance
by λdrug.

Coupling (36) with transport across the connectome using the graph Lapla-
cian, as done in (29), the homogeneous system serves as a good approximation
of the brain-scale dynamics. The progression through the brain network, with and
without treatment, highlights the ability of monoclonal antibodies to localize the
disease entirely to the initial seed nodes if caught within the clearance window of
λ̃crit < λ < λcrit. Specifically, this is achieved by modeling the administration of
aducanumab, which induces a reduction in secondary nucleation, k̃2 = 0.5k2, whereas
in the untreated state, we observe brain-wide progression, as illustrated in Fig. 9. This
dependence of drug efficacy on initial clearance, along with the characterization of
the drug’s effects purely in terms of brain clearance, further underscores the pivotal
role of clearance in neurodegeneration.
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4 Mathematically informed treatment strategies

Mathematical models provide a platform for experiments that would be otherwise dif-
ficult or impossible to conduct in humans. Here we study potential treatment strategies
based on our network model of brain-scale aggregation with in vivo effects.

4.1 Target clearance of smaller aggregates

Different drugs target aggregates of different sizes.We simulate this effect by assuming
that clearance halts or reduces neurodegeneration. An enhanced clearance λdrug, will
specifically affect aggregates within a particular size interval, in addition to the natural
(assumed to be initially subcritical) background clearance λa of the human brain. To
capture these effects in a local model representative of a single brain region in vivo
like (11), we keep the clearance rates constant for most sizes but elevated dramatically
across an interval n0 ≤ i ≤ n1:

dm

dt
= 0, (38a)

dp2
dt

= −λ2 p2 + knm
2 − 2k+mp2 + k2σ(M)m2M, (38b)

dpi
dt

= −λi pi + 2k+m(pi−1 − pi ), i > 2, (38c)

λi =
{

λa + λdrug, n0 ≤ i ≤ n1
λa, otherwise,

(38d)

where

σ(M) = KM

KM + M2 , P =
∞∑

i=2

pi , M =
∞∑

i=2

i pi , (39)

with the corresponding reduced moments system

dP

dt
= −λa P − λdrug

n2∑

i=n1

pi + knm
2
0 + k2 σ(M)m2

0M, (40a)

dM

dt
= −λaM − λdrug

n2∑

i=n1

i pi + 2knm
2
0 + 2k+m0P + 2k2 σ(M)m2

0M . (40b)

As seen in Fig. 13, we perform a sweep of intervals (n0, n1) and observe that tar-
geting aggregates of smaller size decreases the total toxic mass in the system the most.
This underscores the fundamental role of secondary nucleation in forming plaques
and indicates that smaller aggregates constitute the largest toxic mass in the system.

An explanation of the observed results in Fig. 13 can be understood by considering
thefixedpoint solutions. Specifically, a steady state p∗

i for i > 2 satisfies the recurrence
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Fig. 13 Total toxic mass evolution with heightened clearance as in (38d) with n0 specified in the legend,
and n1 = n0 + 10. The equilibrium solution for toxic mass M∞ is lower when smaller aggregates are
targeted with heightened clearance. Here λa = 10 and λdrug = 105 and parameters are as found in Table 1

relation

p∗
i = δi p

∗
i−1, δi = 2k+m0

λi + 2k+m0
, i > 2, (41)

where each recursive effect is dependent on i . Consequently, the fixed point of the
i-mer is

p∗
i = 
i p

∗
2, where 
i =

{∏i
j=3 δ j for i > 2,

1 for i = 2.
(42)

Removing i-mers of sizes n1 ≤ i ≤ n2 gives the toxic mass fixed point,

M∗ = 
p∗
2 −

n2∑

k=n1

k
k p
∗
2, (43)

where we define 
 = ∑∞
k=2 k
k , and

p∗
2 =

√
23

√
−λ2 − 2k+m0 + k2m2

0

1000

√
λ2
2 + 2kpm0
2

. (44)

It remains to prove that
n2∑

k=n1

k
k p
∗
2 >

n4∑

k=n3

k
k p
∗
2, (45)

or

(a+λn1)
( a

a + λ

)n1 − (a+λn2)
( a

a + λ

)n2
> (a+λn3)

( a

a + λ

)n3 − (a+λn4)
( a

a + λ

)n4
,

(46)
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for n1 < n2 < n3 < n4 where a = 2k+m0. Expanding the brackets, to leading order

n1ξ
n1 − n2ξ

n2 > n3ξ
n3 − n4ξ

n4 , (47)

where ξ = a/λ. Since there is a fixed difference between intervals, say d,

n1ξ
n1 − n2ξ

n2 > ξd((n1 + d)ξn1 − (n2 + d)ξn2), (48)

so we require
(n1 − ξd(n1 + d))ξn1 > (n2 − ξd(n2 + d))ξn2 . (49)

Further, there is also a fixed interval size n2 = n1 + nd so

(n1 − ξd(n1 +d))ξn1 > (n1 − ξd(n1 +d))ξn1ξnd + (nd − ξd(nd +d))ξn1ξnd , (50)

that is,

ξnd
(
1 + nd − ξd(nd + d)

n1 − ξd(n1 + d)

)
< 1, (51)

which holds true since ξ � 1. Hence, in the constant clearance regime, removing
intervals of smaller aggregates reduces the total toxic mass equilibrium more than
removing the same-sized intervals of larger aggregates. It remains to explore the effect
of removing larger intervals of larger aggregates and a critical interval size, which
would be more valuable than removing lower-weight oligomers.

Given the pronounced toxicity of oligomeric intermediates relative to larger fib-
rillar species, actively eliminating oligomers has a dual impact. By targeting smaller
aggregates, we significantly reduce the total toxic mass to the greatest extent possible.
This approach aligns with our primary objective of addressing the most toxic species
generated during aggregation. As a reference, aducanumab partially targets oligomers
but mostly clears insoluble amyloid plaques (Tolar et al. 2020).

4.2 Optimal drug administration strategies

Avariety of dosing strategies can be analysed and simulated directed in the nucleation-
aggregation-clearance model with in vivo effects (11). In this section, we formulate
an optimisation problem with the objective of minimising the accumulation of toxic
mass in a given time period, over the parameters of the functional form of drug-induced
clearance λ(t). This allows us to determine the optimal frequency and volume of doses,
while adhering to drug toxicity constraints, in the context of a computational drug trial.

Assuming a linear relationship between antibody concentration and clearance as
proposed by Mazer et al. (2023), we take the concentration of the drug administered
to be directly proportional to the drug-enhanced clearance increment λdrug. That is,
λdrug(Cp) = LCp where Cp is drug concentration and L is constant. In the first
instance, we assume that drug administration is spaced equally and decays exponen-
tially, being cleared from the brain as a non-aggregating particle. Emulating the drug
concentration profiles described in Mazer et al. 2023, [Figure 1], we simulate a dosing
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Fig. 14 The drug induced clearance profiles (a) according to (52), with λa = 10, B = 2 and various λdrug
as specified in the legend. The no drug case is displayed by the black curves. The corresponding toxic mass
M evolution shows a sinusoidal steady state in the presence of drugs. The system is (13) with parameter
values as in Table 1

regime through the following clearance profile:

λ(t) = λdruge
−A mod (t, B) + λa, (52)

in (11). Here A is the clearance rate of the drug from the brain, B is the time period
(days) between drug doses, λa is the background natural clearance, and λdrug is the
drug-enhanced increase in clearance that is assumed to be proportional to the dose.

To demonstrate the effects of this dosing regime, clearance profiles (52) and the
response in toxic mass evolution according to (11) are displayed in Fig. 14 correspond-
ing to three dosing strategies. In this example, for illustrative purposes, the black curves
show the no-treatment case, and only λdrug (the dosage) varies across strategies with
fixed A = 1, B = 2, and ambient clearance λa = 10. We observe a sinusoidal steady
state in the presence of drugs, with the steady state’s peak reducing and the steady
state’s range increasing, with λdrug increasing.

Considering the effects of varying both B and λdrug on misfolded protein mass,
herein referred to as the regime parameters, the best strategy is to maximise the fre-
quency and volume of treatments. However, there is a cost involved in raising λdrug
(dosage) and reducing B (time between each dose) due to the toxicity of antibodies
to the brain environment, such as a significant risk of amyloid-related imaging abnor-
mality (ARIA) (Withington and Turner 2022; Cummings et al. 2021). With this in
mind, the following optimisation problem naturally arises.

Given a trial period of say t = 28 days, we aim to identify the optimal number of
days between drug administration B and volume of drugs given that is proportional to
drug-induced clearance λdrug. We supplement the problem with the constraint that the
total mass of drugs (mg) administered during this period invokes a limited integrated
clearance increment, denoted Cmax. For simplicity, we choose A = 1, assuming that
A remains constant as clearance increases. We optimise λdrug and B such that the
average toxic mass across one cycle of drug administration, i.e. the average of the
steady states shown in Fig. 14b, M̄ , is minimised. In full, the optimisation problem
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Fig. 15 Contour maps showing the average toxic mass M̄ (a) and toxic load of the drug Cmax (b) as
functions of the drug dosing regime parameters in (52): the drug induced maximum clearance increment
λdrug, and the frequency of treatments B

reads

Minimise M̄ over 0.2 < B < tmax, 0.2 < λdrug < 80 (53)

subject to (54)
∫ tmax

0
(λdruge

−A mod (t, B)) dt = Cmax. (55)

Contour plots of the average toxic mass M̄ for varying regime parameters
are shown in Fig. 15a, with the corresponding drug toxicity Cmax shown in
Fig. 15b. We identify the optimal dosing regime, subject to a specific drug toxi-
city constraint Cmax by consulting the combination of Fig. 15a and b in Fig. 16.
Solutions satisfying the constraints Cmax ≈ 100, 200, 400, 800, 1600 in (55) lie
along the respective dashed lines, and the colour function displays the relative aver-
age toxic mass equilibrium M̄ . Subject to these constraints, solutions with the lowest
average toxic mass M̄ correspond to the lowest spacing between doses, B → 0.

The optimal strategy, therefore, is the trivial one: to take B → 0, corresponding
to a constant supply of drugs. Of course, this could be impractical or detrimental to a
patient’s quality of life. Given the potential impracticality of constant drug supply, the
key question is at what cost, in terms of toxic mass M̄ , can drug doses be distributed
(increasing B). For reference, consider regime parameters corresponding to Cmax =
100 in (55). The optimal solution, a constant supply of drugs with λdrug = 100/28,
results in the minimum allowable average toxic mass of M̄ = 3.79. Other solutions
satisfying the same drug toxicity constraint, but not necessarily minimising M̄ , are
shown in Fig. 16 and demonstrate some flexibility in dosing strategies. For example,
λdrug = 5.6 once a day results in the only slightly increased M̄ = 3.81. A solution
with seven days between doses of λdrug = 25 results in a similar average toxic steady
state of M̄ = 4.22, albeit with a higher variance around this equilibrium. This implies
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Fig. 16 Contour plot with the colours displaying the average toxic mass M̄ accumulated in the presence of
a drug with different dosing regimes defined by varying parameters λdrug correlated directly with dosage
size, and B the frequency of doses. Toxic mass is found numerically by solving (11) with (52). Solutions
which satisfy the constraints outlined in (55), namely with regime parameters invoking the specific toxic
load Cmax, for different values of Cmax, lie along the contour lines

some leniency on dosing frequency. Overall, as seen in Fig. 16, M̄ does not greatly vary
along the constantCmax contours; the contours of M̄ andCmax in Fig. 15a and b follow
similar trends. The amount that M̄ varies with B with Cmax constant is dependent on
Cmax, as observed by the higher range in M̄ values along the Cmax = 400 contour
compared to the Cmax = 100 contour. Therefore, depending on Cmax and the desired
reduction in toxic mass, increasing the days between doses can lead to insignificant
increases in toxic mass, with potentially significant improvements in quality of life.

In addition, as shown by Fig. 17, keeping λmax constant and lowering B can have
a high impact on reducing M̄ for smaller values of B but is less impactful for higher
B. Further, increasing λdrug is less impactful for higher values of λdrug (shown by the
lighter curves). Together, these results hold potential in determining dosing strategies
in personalised medicine, with initial conditions of (11) reflecting the initial toxic
loads of patients and parameters in (52) tunable to the desired reduction in toxic load.
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Fig. 17 The evolution of the average toxic mass M̄ with constant drug dosage corresponding to a clearance
increment of λdrug and varying frequencies of administration B. Constant λdrug values range from 10 to
80 with differences of 10 between curves

5 Discussion

Theoretical research into toxic mass accumulation in neurodegenerative diseases has
thus far exclusively consisted of either detailed in vitro analysis of aggregation kinetics
or in vivo studies on the effects of transport and clearance in macroscale models on
networks, with the former being validated against experimental observations and the
latter with structural data. Both aspects have proved essential for our understanding of
AD pathology. However, there is a cloudymiddle ground restricting our understanding
of aggregation inside the complex domain of the human brain. The development of a
nucleation-aggregation model which includes in vivo effects such as protein produc-
tion, saturation, transport and, most importantly, the clearance of solutes, remains a
task that has only been addressed mechanistically in two prior studies (Fornari et al.
2020; Thompson et al. 2021). Fornari et al. (2020) used a Smoluchowski-typemodel to
analyse the effect of aggregate transport at the brain scale,whileThompson et al. (2021)
considered the effects of a bulk constant clearance at the microscopic scale. Our work
combines both approaches within the same mathematical framework, establishing a
general picture for the self-assembly of Aβ in the aggregation cascade in vivo across
the connectome. We have derived a class of nucleation-aggregation-clearance models
for the homogeneous dynamics and spatial progression of Aβ in the brain, tracking
the evolution of different size aggregates with distinct properties instrumental in neu-
rodegeneration. This new class of models provides a therapeutic modelling platform
reflective of the human brain for the simulation of potential therapies at the spatial and
temporal scales of the disease. Notably, we reveal the therapeutic effect of enhanced
clearance behind the success of recent drug trials. The dependence of drug efficacy on
initial clearance, along with the characterisation of the drug’s effects purely in terms
of clearance, further emphasises the pivotal role of clearance in neurodegeneration.
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5.1 Brain scale models of nucleation, aggregation, clearance and transport

The first primary aim of this work was to develop a comprehensive and entirely
mechanistic model encompassing the aforementioned in vivo effects, along with phys-
iological effects not previously modeled, with a focus on quantifying the role of
dynamic clearance of aggregates in neurodegeneration at the brain scale. To address
the complexities of developing a model representative of a single brain region, we
advance current state-of-the-art chemical kinetic models by incorporating physiolog-
ical effects observed in experiments. Then, we include strong transport anisotropy
in the brain through the graph Laplacian to simulate aggregate dynamics across the
spectrum of aggregate sizes at the brain scale. The study of such systems is guided by
the homogeneous case for which both total mass evolution and aggregates’ size dis-
tribution are obtained analytically, and bifurcation analysis reveals critical clearance
regimes dependent on kinetic rate constants.

At the local ROI level, analysis of the homogeneous nucleation-aggregation-
clearance models (11) reveals that the clearance rate dictates the timescale of the
nucleated transition to an aggregated brain region and the final toxic mass equilib-
rium. In the absence of a simulated seed, an increase in toxic mass is characterised by
an early phase of seeding depending on primary nucleation, followed by a period of
linear growth mostly controlled by aggregation of monomers onto the fibril, and then a
phase of autocatalytic growth dominated by the multiplicative processes of secondary
nucleation and elongation. Once enough toxic mass accumulates, clearance domi-
nates, and the toxic mass approaches a saturated steady state. Importantly the critical
clearance rate, above which all aggregates clear from a brain region, holds significant
therapeutic potential. Recovering similar results to Thompson et al. (2021), the criti-
cal clearance formulae depend upon the assumed clearance form relative to aggregate
size, with different dependencies on the aggregation rate constants. When analysing
the local system with dynamic clearance given by (26), local clearance reduces to the
basal clearance capacity at rates relative to the difference between initial clearance and
basal clearance. After this point the dynamics of the system are equivalent to those
of the homogeneous nucleation-aggregation-clearance models (11) so we recover the
same critical basal clearance regimes as for clearance in (11).

To model the interplay between aggregation and clearance at the brain-scale, the
local dynamics are coupled with anisotropic transport across the connectome in (29).
As identified first by Fornari et al. (2020), the progression of the disease consists of an
initial stage that develops at the seeded node, followed by primary infection in con-
nected nodes, mainly driven by diffusion rather than aggregation kinetics. These nodes
distribute seeds, and due to the brain’s small-world network structure, secondary infec-
tion develops in most nodes soon after primary infection. In the growth-dominated
regime representative of the toxic protein cascade in a human brain, local dynamics
dominate once a node receives a seed by primary or secondary infection. We thus find
that the analytical results of the homogeneous model (11) are a good approximation
for the connected dynamics at the brain scale. Furthermore, the brain-scale dynam-
ics appear invariant to the diffusion of aggregates larger than nuclei, indicating that

123



22 Page 30 of 36 G. S. Brennan, A. Goriely

the transport of dimers is the primary factor driving pathology, and size-dependent
diffusion does not significantly alter the dynamics.

5.2 Therapeutic modelling insights

The pivotal field of Alzheimer’s drug design commands extensive research activity.
Yet, drug trials and drug performance projections rely on data without providing com-
prehensive insights into the mechanisms of drug action. Current microscopic chemical
kinetic models shed light on how drugs influence the aggregation process (Linse et al.
2020), while empirical compartmental models project the longer-term effects of anti-
amyloid treatments by fitting data from clinical trials to semi-mechanistic macroscale
models (Mazer et al. 2023), with no consideration of the drug action at the microscale.
Our in vivo nucleation-aggregation-clearance model aims to bridge the gap between
these two approaches, extending in vitro observations to decades of AD pathology
at the brain scale, considering both the increase in clearance due to drugs and the
inhibition of specific steps in the aggregation process. We thus present the first fully
mechanistic model of brain-scale in vivo aggregation growth, clearance and transport
that can describe the effects of therapeutic agents both analytically and through direct
simulation, aid drug performance projection, and lead exploratory theoretical studies
to ultimately guide drug design. We thus quantified the action of potential drugs on
protein aggregation in vivo, and conducted a preliminary study on the most favorable
treatment strategies, concerning optimal aggregate sizes to target, specificmicroscopic
steps of aggregation to inhibit, and the frequency and volume of antibody dosage.

Specifically, we modeled the mechanism of action of treatments in the homoge-
neous system (36) and its corresponding brain-scale extensions to see the effect of
the antibodies on the disease dynamics. For aducanumab, we modeled the pharmaco-
dynamic property of a decreased secondary nucleation rate constant due to the drug
binding to fibrils, thus inhibiting the aggregation process (Linse et al. 2020) and medi-
ating enhanced clearance, as considered by Mazer et al. (2023). First focusing solely
on the kinetic drug effects we observe a consistent pattern across all models: a decrease
in critical clearance, leading to an improvement in the effectiveness of compromised
local clearance. This enables a patient under treatment to completely transition to a
healthy state or experience a lessened toxic load, depending on the initial clearance at
the time of commencing therapy. Mathematically, the inhibitory actions of potential
therapeutic agents on the aggregation process transforms the aggregated equilibrium
(Fig. 12). Thus through steady-state analysis, we identify that the primary therapeutic
effect of the drugs is a reduction in critical clearance, increasing the system’s overall
effective clearance.

Considering the drug’s effect in the microscopic aggregation model (36) coupled
to transport allows us to track the response in the evolution of distinct aggregate sizes
across the connectome. The effects of the kinetic action of treatment are the same:
a transformation of the toxic steady-state solution in the presence of drugs (Fig. 12),
with the potential to initiate a transition from an unhealthy patient state (λ < λcrit)
to a healthy state (λ > λ̃crit) in which the otherwise compromised clearance rates are
sufficient to completely remove toxicmass in the presence of drugs. The complete inhi-
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bition of aggregation and propagation shown in ?? is due only to the kinetic action of the
drug reducing λcrit increasing the effectiveness of the brains damaged clearance mech-
anisms. This transition from an unhealthy state to a healthy equilibrium is dependent
upon the brain’s initial clearance upon drug administration, underscoring the need for
treatments early on in disease progression when λ̃crit < λ < λcrit. The impact of drugs
such as aducanumab on secondary nucleation thus has a profound effect, employing a
decrease in the aggregation kinetic rate constants thereby improving the effectiveness
of brain clearance. Our most critical finding is that the drug’s kinetic effect alone can
be sufficient for a transition from a brain with detrimental levels of toxic mass to a
healthy state. In addition, considering enhanced clearance due to drug binding in com-
bination with the kinetic effect of the drugs leads to a more pronounced reduction in
long-term toxic mass accumulation. Significantly, in the presence of drugs, the critical
toxic seed as discussed in Brennan et al. (2023) is increased, so it is less likely that a
dynamic clearance will drop below critical. For Aβ, such results at the local level have
significant implications at the brain scale because, by the time the disease becomes
symptomatic, Aβ has likely spread throughout the brain and levels are approximately
homogeneous. In future work, when modeling tau, it is integral to consider how treat-
ment affects tau transport, as this is essential for reproducing the Braak stages.

5.3 Limitations and extensions

In adapting the well-established chemical kinetic model to an in vivo setting, we have
made several necessary modeling assumptions. While future scientifc advances may
allow for refinement of these assumptions, they are currently essential for progress in
understanding aggregation processes in the brain:

• The model presently overlooks the spatial organization of aggregates at the
microscale, distinguishing oligomers and protofibrils purely based on size, rather
than molecular structure or functional characteristics. To take these effects into
account would require a better understanding of the shape of different oligomers.

• We assume a nucleus size of two monomers. While this assumption can be easily
modified, it is not clear what the exact seeding size is or if there is a single one
rather than a distribution. Larger seeding size would lead to an extended lag phase
in the toxic mass dynamics predicted by our model.

• Akey assumption in ourmodel is that secondary nucleation saturateswith the toxic
mass M , which is crucial for achieving toxic mass saturation. This assumption
might later be refined to account for saturation with brain volume. We also assume
homeostasis inmonomer production and clearance, leading to a constant monomer
concentration, as suggested by clinical literature. Itwould be valuable to investigate
variations in monomer production in future work, particularly to model treatments
that inhibit amyloid precursor protein (APP).

• One of the primary challenges in this study is that the kinetic parameters are
derived from in vitro data. Determining these rate constants within the human
brain environment would be a significant step forward. Furthermore, clearance
plays a critical role in slowing disease progression, and a detailed analysis of the
clearance dynamics, particularly in relation to factors such as the vasculature and
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the glymphatic system, will be essential for uncovering fundamental mechanisms
and identifying potential therapeutic interventions.

5.4 Conclusion

Despite its limitation, our brain-scale nucleation-aggregation-clearance models open
up avenues for the mathematically-informed therapeutic strategies to control patho-
logical protein aggregation, addressing questions that current modelling studies fail
to address at the brain scale. We have identified that a reduction in λcrit is successful
in curing patients. Quantifying the actions of drugs in this way allows us to identify
which rate constants might inhibit aggregation to provide the largest reduction in λcrit.
For example, if considering the size dependant clearance λi = λ0/i to be reflective of
the human body, the form of the critical clearance rate (25) suggests that targeting the
elongation processes would be most effective in reducing the critical clearance and
most vitally translating the fixed point solution curve. Further, we performed a sweep
of an interval of increased clearance and uncovered that targeting smaller aggregates
is more impactful than targeting larger ones. Additionally, we studied an optimization
problem to demonstrate how the models can inform dosing regimens, as described
and simulated in Mazer et al. (2023). The results suggest that more frequent dosing
is preferable for reducing average toxic mass and variance, although combinations
of higher, less frequent doses can achieve the same steady states. A more in-depth
analysis of the application of these models for pharmacological use is of great interest
for future studies.
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