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Multilevel irreversibility reveals higher-order
organisation of non-equilibrium interactions in
human brain dynamics
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Information processing in the human brain can be modelled as a complex dynamical system
operating out of equilibrium with multiple regions interacting nonlinearly. Yet, despite
extensive study of the global level of non-equilibrium in the brain, quantifying the irreversibility
of interactions among brain regions at multiple levels remains an unresolved challenge. Here,
we present the Directed Multiplex Visibility Graph Irreversibility framework, a method for
analysing neural recordings using network analysis of time-series. Our approach constructs
directed multi-layer graphs from multivariate time-series where information about irreversibility
can be decoded from the marginal degree distributions across the layers, which each
represents a variable. This framework is able to quantify the irreversibility of every interaction
in the complex system. Applying the method to magnetoencephalography recordings during a
long-term memory recognition task, we quantify the multivariate irreversibility of interactions
between brain regions and identify the combinations of regions which showed higher levels
of non-equilibrium in their interactions. For individual regions, we find higher irreversibility in
cognitive versus sensorial brain regions whilst for pairs, strong relationships are uncovered
between cognitive and sensorial pairs in the same hemisphere. For triplets and quadruplets,
the most non-equilibrium interactions are between cognitive-sensorial pairs alongside medial
regions. Finally, for quintuplets, our analysis finds higher irreversibility when the prefrontal
cortex is included in the interaction. Combining these results, we show that multilevel
irreversibility offers unique insights into the higher-order, hierarchical organisation of neural
dynamics and presents a new perspective on the analysis of brain network dynamics.

neural dynamics | time-series irreversibility | visibility graphs | long-term memory | higher-order
interactions

The human brain produces complex spatiotemporal neural dynamics across
multiple time and length scales. Abstracting the brain as a large-scale network

of discrete interacting regions has proved fruitful in the analysis and modelling
of neural dynamics (1). Moreover, this abstraction lends neuroscientists the
language and tools of statistical physics in the hope of uncovering the central
mechanisms driving brain function and their links to observed neural dynamics
(2, 3). For instance, recent data captured by functional imaging showed large scale
violations of detailed balance in human brain dynamics, suggesting that the brain
is operating far from equilibrium (4). This fundamental observation has prompted
the development of a range of techniques to provide a measure for the degree of
non-equilibrium in neuroimaging time-series recorded in different conditions (5–10).
These measures have shown that the degree of non-equilibrium is elevated during
cognitive tasks (4–7) whilst reduced in both impairments of consciousness (11),
sleep (10) and Alzheimer’s disease (12), indicating that non-equilibrium may be a
key signature of healthy consciousness and cognition in the brain (13). Despite
this, current methods are restricted to aggregate measures of non-equilibrium. We
present a novel approach to the analysis of non-equilibrium brain dynamics that is
able to measure the irreversibility of individual, higher-order interactions to gain
valuable insight into the organisation of neural dynamics.

The second law of thermodynamics asserts that, in the absence of entropy
sinks, the average entropy of a system increases as time flows forwards (14, 15).
More specifically, a system at a steady-state dissipating heat to its environment
causes an increase in entropy (16, 17). This results in the system breaking the
detailed balance condition and results in an asymmetry in the probability of
transitioning between system states (18).
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Fig. 1. The DiMViGI workflow. The method is able to measure the irreversibility of each interaction in a multivariate time-series. It is comprised of three stages, illustrated here
with a random time-series of 2 variables: (a) First, we construct a 2-layer directed multiplex visibility graph from the multivariate time-series where each layer represents a
variable and each node represents a time-point. The connections are made according to the visibility criterion defined in Eq. 7 and illustrated in Fig. 2. (b) Second, we calculate
the in- and out- degree distributions for each tuple at each level. In the 2-variable system, there are 3 such tuples: the singletons, (x1), (x2) and the pair (x1, x2). The
top left/right panels show the in- and out- degree distributions for the singletons (x1), (x2) respectively. The bottom two panels show the in- (Left) and out- (Right) degree
distribution of the pair (x1, x2). (c) Third, we measure the Jensen-Shannon divergence of the in- and out- degree distributions for each tuple in the system. We show the
1-order irreversibility, ς̃(x1),ς̃(x2), of the singletons (x1), (x2) (top) and the 2-order irreversibility, ς̃(x1,x2), of the pair (x1, x2) (bottom).

This, in turn, yields macroscopically irreversible trajectories
from reversible microscopic forces inducing what Eddington
denoted ‘the arrow of time’ (AoT) (19). The rate at which
a system dissipates entropy, the ‘entropy production rate’
(EPR), is a natural measure of the degree of non-equilibrium
in the stationary state, as it is zero in equilibrium and
positive out of equilibrium (20). Results in modern non-
equilibrium thermodynamics have shown that the EPR of a
non-equilibrium system can be derived from the irreversibility
of observed trajectories (21–25). In particular, the EPR is
given by,

Φ = k lim
τ→∞

1
τ

DKL[P ({x(t)}τ
t=0)||P ({x(τ − t)}τ

t=0)], [1]

where {x(t)}τ
t=0 and {x(τ − t)}τ

t=0 represent a trajectory
and its time-reversal, P (·) represents the ‘path probability’,
the probability of observing that specific trajectory, k is
Boltzmann’s constant, and DKL represents the Kullback-
Leibler divergence (KLD),

DKL(P ||Q) =
∫

p(x) log
(

p(x)
q(x)

)
dx, [2]

which measures the distance between two probability
distributions P and Q with densities p and q respectively
(24, 25). In the case of real-world data, trajectories are
sampled at discrete time-points forming a multivariate
time-series (MVTS), and the EPR is lower-bounded by
the irreversibility of the observed MVTS. As a result, the
irreversibility of a neural recording is a natural measure
of the degree to which the neural dynamics are out of
equilibrium (13).

Two complimentary interpretations of the AoT in the
brain have been given. First, the hierarchical organisation
of positions in state-space, that results from asymmetrical
transition probabilities, has been linked to the dynamic
hierarchical organisation of brain regions (7, 26, 27). Second,
the AoT has been interpreted as inducing a ‘causal flow’

in the system where some regions emerge as information
‘sources’ and others as ‘sinks’ with these relationships
identifiable from irreversibility analysis (7, 8). These studies
for quantifying non-equilibrium in the brain approximate the
global evidence for the AoT in time-series using techniques
such as estimating transitions between coarse-grained states
(4), with time-shifted correlations (5), machine learning
(6) or with model-based approaches (7–10). However,
the AoT and the corresponding production of entropy
is a macroscopic property of the system, emerging from
interactions between the microscopic variables at multiple
scales. Recent theoretical research has shown that the AoT
can be decomposed into unique contributions arising at
each scale within the system (28, 29) or into spatiotemporal
modes of oscillation (30), offering insights beyond a global
level of non-equilibrium in the brain. Motivated by these
insights, we present the Directed Multiplex Visibility Graph
Irreversibility (DiMViGI) framework, as illustrated in Fig.
1, for analysing the irreversibility of multivariate signals
at multiple levels using network analysis of time-series, in
particular the visibility graph (31, 32). Using the DiMViGI
framework, we investigate the irreversibility of human
brain signals, captured by magnetoencephalography (MEG),
during a long-term recognition task of musical sequences
that utilised long-term memory (33–42). Our analysis covers
all possible levels in the system and is able to capture the
higher-order organisation of brain regional interactions
yielding interpretable and novel insights into the neural
dynamics underpinning long-term memory and auditory
recognition.

Quantifying the arrow of time in multivariate interac-
tions

As the evidence for the AoT can be inferred from the
irreversibility of observed trajectories, we focus on the
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quantity,

σ =
∑

Γ

P (Γ) log P (Γ)
P (Γ′) , [3]

where Γ is a stochastic trajectory, Γ′ is its time-reversal and
P (Γ) is the probability of observing that specific trajectory.
Eq. 3 is precisely the KLD between the forward and
backward path probabilities, which is a natural measure
of the irreversibility of a stochastic process (23). Inspired
by previous decompositions (28, 29), we note that individual
interactions can have differential levels of irreversibility within
a globally non-equilibrium system. Our framework aims to
compute the irreversibility of individual k-tuples of variables
in a MVTS in order to compare interactions at each level,
defined by k. Firstly, we consider the projection of an
N−dimensional trajectory, Γ = {x1(t), ..., xN (t)}T

t=0, into
the portion of state-space defined by the k-tuple of variables
(xi1 , ..., xik ), to be the k-dimensional trajectory,

Γ(xi1 ,...,xik
) = {xi1 (t), ..., xik (t)}T

t=0. [4]

The DiMViGI framework then quantifies the marginal irre-
versibility of a given tuple by approximating,

ς(xi1 ,...,xik
) =

∑
Γ(xi1 ,...,xik

)

P (Γ(xi1 ,...,xik
)) log P (Γ(xi1 ,...,xik

))
P (Γ′(xi1 ,...,xik

))
,

[5]

using visibility graphs, as will be detailed subsequently. As
a result, we are able to identify tuples of variables whose
multivariate trajectory is highly irreversible indicating a
strongly non-equilibrium interaction between the variables in
this tuple, which also suggests the presence of a hierarchical
structure within the tuple (7).

Measuring irreversibility with the multiplex visibility
graph

We build on the growing paradigm of network analysis of
time-series that has gained traction in the analysis of neural
signals (43, 44). These methods are characterised by mapping
a time-series into a corresponding network. For instance, the
visibility algorithm maps a univariate time-series into a so-
called ‘visibility graph’ (VG) (31). VGs and their variations
are a powerful model-free tool for mapping a continuous-
valued time-series into a discrete object. Their versatility,
as well as their lack of assumptions on the underlying
dynamics, has lent them to diverse applications, in particular
in neuroscience (43, 44), as well as in the calculation of
information-theoretic quantities from complex and chaotic
dynamics (45). Explicitly, given a time-series {Xi}i∈I with
time indices {ti}i∈I , where Xi ∈ R and I is the index set, the
VG has one node for each i ∈ I. Nodes i, j ∈ I are connected
by an edge if the corresponding data-points (ti, Xi) and
(tj , Xj) are ‘mutually visible’ i.e. that they satisfy that, for
any intermediate data-point (tk, Xk) with ti < tk < tj ,

Xk < Xj + (Xi − Xj) tj − tk

tj − ti
. [6]

In geometric terms, this condition is met if (ti, Xi) is
visible from (tj , Xj). That is, the line connecting (ti, Xi)

i
i

ti

ti

ti

i

Fig. 2. Visibility graphs. An example of a visibility and a directed visibility graph
constructed from a random time-series. (a) A random equi-spaced time-series. (b)
The red lines connected data points that mutually visible. (c) The visibility graph
associated with the random series. (d) A time-series showing visibility directed
forward in time. (e) The directed visibility graph corresponding to the above series.

and (tj , Xj) does not cross any intermediate data-points
as shown in Panel b) of Fig. 2. Trivially, each node is
connected to its neighbours whilst large positive fluctuations
become hubs with many connections due to their greater
visibility. This construction can be naturally extended to
a MVTS by considering the ‘multiplex visibility graph’
(MVG) (46). Given a MVTS with N variables, the
MVG is a multi-layer graph, a so-called ‘multiplex’,
with N independent layers with the same node base.
Applying the visibility algorithm to each variable in turn
yields a series of VGs which each define one layer of the MVG.

We can further generalise the VG to measure irreversibility
in univariate time-series by extending the undirected VG to
a time-directed counterpart (DVG) (32, 47). To do so, we
simply direct the edges ‘forward in time’. For example, an
edge connecting time-points ti < tj is now directed i → j
(see Panels d-e) of Fig. 2). We then decompose the degree d
of a node into the sum of the in-going and out-going degree,

d = din + dout. [7]

A univariate stationary process, X(t), is time-reversible
if the trajectory {X(t1), ..., X(tT )} is as probable as
{X(tT ), ..., X(t1)} (48). Therefore, in the case of a reversible
process, the in- and out-going degree distributions of the
associated DVG should converge (32, 47). It follows that
the level of irreversibility can be captured by measuring the
divergence between the in- and out-going degree distributions.

Nartallo-Kaluarachchi et al. PNAS — January 30, 2025 — vol. XXX — no. XX — 3
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Fig. 3. Experimental paradigm for the collection and processing of MEG data. (a) The brain activity in 51 participants was collected using magnetoencephalography
(MEG) while they performed a long-term auditory recognition task. Participants memorised a 5 tone musical sequence. They were then played 5 further sequences of tones
that were either the original sequence or a modified version. They then were requested to state whether the sequence belonged to the original music or was a varied version of
the original sequences. In this analysis we only consider the experimental condition where participants were played the original memorised sequence. (b) The MEG data was
co-registered with the individual anatomical MRI data, and source reconstructed using a beamforming algorithm. This procedure returned one time-series for each of the 3559
reconstructed brain sources. Six main functional brain regions (ROIs) were derived. The neural activity for each ROI was extracted yielding a multivariate time-series. For
further details on the experimental set-up see Materials and Methods and SI. For a comparison between experimental conditions see Bonetti et al (33).

We extend this method to the case of MVTS. We direct
the edges of the MVG such that they go forward in time
yielding a directed MVG (DMVG). Since this is a multiplex
graph, we can calculate the multivariate joint, over all layers,
in- and out-going degree distributions, and all associated
marginals.

Explicitly, we consider a MVTS with N variables
and T time points, given by {X(t1), ..., X(tT )}, where
X(ti) = (x1(ti), ..., xN (ti)) ∈ RN and construct its associated
DMVG. For a given k-tuple of variables, (n1, ..., nk), we
calculate the multivariate marginal in-going and out-going
degree distributions:

P
(n1,...,nk)
in (d1, ..., dk), P

(n1,...,nk)
out (d1, ..., dk), [8]

where P (n1,...,nk)(d1, ..., dk) is the probability of a node having
degree di in layer ni for all i simultaneously. We then
compute the divergence between these particular in- and out-
going marginal distributions using Jensen-Shannon divergence
(JSD) (see Materials and Methods) to obtain a measure of
the k-order irreversibility,

ς̃(n1,...,nk) = JSD(P (n1,...,nk)
in ||P (n1,...,nk)

out ). [9]

As we are considering the multivariate joint distribution, we
are quantifying irreversibility in the multivariate state-space.
Repeating this for all possible k-tuples in the system, we
quantify the relative irreversibility of each interaction at a
given level. We can repeat this process for all values of k,
thus measuring irreversibility at all levels.

In summary, the DiMViGI framework, shown in Fig.
1, begins with a MVTS of neural activity. The series is
mapped into the associated DMVG using the visibility
algorithm. We calculate the joint in and out-degree
distributions and all the possible marginal in- and out-
degree distributions. We measure the JSD between the
pairs of in- and out-marginals for each tuple in the system
to quantify the irreversibility of that interaction. At each
level k, we can then compare the relative irreversibility of
each k-order interaction to identify the dominant irreversible
interactions.

Analysis of MEG during long-term recognition

We consider MEG recordings from 51 participants with
15 trials per participant source-localised into 6 regions of

interest (ROIs) collected according to the experimental
paradigm presented in Fig. 3, described in Materials and
Methods, SI and in Ref. (33). The ROIs include the auditory
cortices in the left and right hemispheres (ACL, ACR);
the hippocampal and inferior temporal cortices in the the
left and right hemispheres (HITL, HITR) and two medial
regions, the bilateral medial cingulate gyrus (MC) and the
bilateral ventro-medial prefrontal cortex (VMPFC). Panel a)
of Fig. 4 shows a schematic representation of the regions.
The participants performed an auditory recognition task
during the MEG recordings (Panel a), Fig. 3). First, they
memorised a short musical piece. Next, they were presented
musical sequences and were requested to state whether the
sequence belonged to the original music or was a varied
version of the original sequences. Since differences between
experimental conditions have been described in detail by
Bonetti et al (33) and are beyond the scope of this work,
here, we consider only one experimental condition, where
participants recognised the original, previously memorised
sequences.

For each participant and trial, we construct the DMVG.
Next we estimate every marginal in- and out- degree
distribution using each DMVG as a sample and calculate
the JSD. We denote the JSD between k-dimensional degree
distributions as the k-order irreversibility. Alternatively, for
each participant in isolation, the degree distributions can
be calculated using only their associated trials to get an
estimate of the k−order irreversibility for each participant
and each tuple (see SI). However, due to the higher number
of samples, the cohort-level analysis is more robust and
hence is our focus in this report. The results of the DiMViGI
analysis are presented in Figure 4. We note that the darker
colours represent tuples with greater irreversibility whilst the
lighter colours reflect more reversible interactions. The icon
along the x-axis indicates which tuple is being considered,
with reference to the schematic in Panel a) of Fig. 4,
with the included regions coloured in black. Furthermore,
we highlight statistically significant tuples at each level.
The number of (∗)/(†) indicates the number of standard
deviations above/below the k−level mean.

We begin our analysis at 1-order. Whilst individual
(microscopic) variables are often reversible in a non-
equilibrium complex system, the ROIs considered here reflect
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Fig. 4. DiMViGI analysis of 6-ROI MEG recordings during a long-term memory task. The number of (*)/(†) represents the number of standard deviations above/below the
mean for a particular tuple at that level. (a) Schematic diagram showing the organisation of the ROIs in the MEG recordings. The ROIs are ACL/R: auditory cortex left/right; MC:
medial cingulate gyrus; VMPFC: ventro-medial prefrontal cortex; HITL/R: hippocampal inferior temporal cortex left/right. Cognitive regions are in red and sensory regions in
blue. (b) 1-order irreversibility at cohort-level. At this level, we consider irreversibility of each signal in isolation. The hippocampal regions are the most irreversible whilst the
sensory regions are the most reversible. (c) 2-order irreversibility at cohort-level. The pairs that show the most irreversibility are those that include a sensory and hippocampal
pair in the same hemisphere (ACL/R, HITL/R). The most reversible pair is (ACL, ACR) which is made up of two sensory regions. (d) 3-order irreversibility at cohort-level. The
triplets that are most irreversible are those that include an intra-hemispheric sensory and hippocampal pair as well as the prefrontal cortex (ACL/R, HITL/R, VMPFC). The
most reversible contains both hippocampal regions and the medial cingulate gyrus, (HITL, HITR, MC). (e) 4-order irreversibility at cohort-level. The quadruplets that are most
irreversible are those that include a hippocampal and sensory pair and both medial regions (ACL/R, HITL/R, MC, VMPFC) and those that include both hippocampal regions, a
sensory region and the VMPFC. The most reversible is the quadruplet that contains no medial regions. (f) 5-order irreversibility at cohort-level. The most reversible quintuplets
are those that omit a medial region, in particular the quintuplet that omits the VMPFC.

a very coarse parcellation of the brain. At this level, we
are considering each ROI, which is composed of many truly
microscopic variables, in isolation and note that each one
shows significant irreversibility. It is clear from Panel b) of
Fig. 4, that the ROIs have a clear disparity in their levels of
irreversibility. The sensory ROIs are more reversible than the
medial and hippocampal ROIs. Furthermore, there is a skew
towards the right hemisphere being more irreversible than
the left. This result emerges consistently across all levels.
Next, we consider the irreversibility of pairwise interactions
(k = 2). Panel c) of Fig. 4 shows the 2-order irreversibility
for all pairs. We are able to identify strongly irreversible
pairs such as the intra-hemispheric pairs (ACL, HITL) and
(ACR, HITR). On the other hand, cross-hemispheric pairs,
e.g. (ACL, ACR), are the most reversible, indicating a

lack of interaction between them. The strong hemispheric
symmetry in the results validates the findings, as it is an
expected and intuitive observation. Panel d) of Fig. 4
shows the irreversibility for each triplet interaction in the
system. The highly irreversible triplets are those that include
a hemispheric pair alongside a medial region, with those
containing the VMPFC, a region known to drive brain
dynamics during task (49), being particularly irreversible.
Panel e) of Fig. 4 shows that the most irreversible quadruplet
interactions are composed of a hemispheric pair alongside
both medial regions as well as those that contain (VMPFC,
HITL, HITR) alongside a sensory region. Conversely,
the quadruplet containing no medial regions, is the most
reversible, and therefore has the least interaction. This is
particularly interesting as this quadruplet is made up of

Nartallo-Kaluarachchi et al. PNAS — January 30, 2025 — vol. XXX — no. XX — 5



621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

the two most irreversible pairs yet they do not appear to
interact as a foursome. Therefore, this framework is truly
capturing higher-order interactions that cannot simply be
decomposed into a sum of independent interactions of lower
order. Finally, Panel f) of Fig. 4 shows that quintuplets
that contain both medial ROIs are the most irreversible.
Furthermore, the quintuplet that does not contain the
VMPFC has the most reversible interaction. Whilst we have
attempted to interpret the results from the perspective of the
hierarchical and higher-order organisation of the auditory
system, we note that outliers would be expected to arise
naturally due to statistical variation. Nevertheless, due to
the consistency of our results across levels, for example the
hemispheric symmetry that is observed at each level, such
results cannot be explained purely by chance. Furthemore, a
sub-sampling analysis shows that the error in irreversibility
measurements are typically smaller than differences between
tuples implying a range of statistically significant differences
(see SI).

We can interpret this result in the context of predictive
coding and its links to sensory tasks (50–52), as well as
through the hierarchical organisation of the auditory system.
The participants are exposed to a memorised tonal sequence
that does not deviate from their expectation of what
they were about to hear. Under the theory of predictive
coding, this would result in an adjustment of a participant’s
prior expectations, facilitated by asymmetric, hierarchical
interactions between brain regions at multiple levels, in order
to reinforce the prior expectations in light of the new sensory
information (53). This in turn would lead to a cascade
of interactions between key ensembles of regions whose
function is optimised for the process of auditory recognition.
As irreversible brain dynamics stem from irreciprocal and
hierarchical interactions, such a mechanism results in marked
irreversibility in the emergent dynamics (7).

Discussion

In this study, we describe a novel framework for measuring
the emergence of non-equilibrium dynamics, through
multivariate irreversibility, at multiple system levels. We
are able to capture the irreversibility of each possible
interaction in a MVTS of signals. Applying the DiMViGI
framework to neural recordings obtained during a long-term
memory recognition task, we investigate the higher-order
organisation, and the associated non-equilibrium interactions,
of brain regions and how they break time-reversal symmetry
during an auditory recognition task. The results clearly
show a broad distribution of irreversibility at each system
level; hence we are able identify which interactions are
particularly irreversible, which we interpret as a correlate
of a hierarchical and synergistic interaction. Furthermore,
we link irreversibility to hierarchical predictive coding and
theorise that non-equilibrium interactions could emerge
as a consequence of the modulation of prior expectations
in light of new sensory information (53). According to
the theory of predictive coding, this might be realised
through hierarchically asymmetric interactions that, in
turn, induce the emergence of irreversibility at multiple
system levels (7, 54, 55). Within this context, the DiMViGI
framework confirms the hierarchical organisation of the

auditory system (56–59), with reciprocal connections, such
as those found within the auditory cortex, resulting in
more reversible dynamics, and hierarchical relationships,
such as those found between the auditory cortex and the
hippocampus, resulting in markedly irreversible dynamics.
Furthermore, our approach goes beyond typical approaches
to the auditory system, such as the analysis of co-activation
and functional connectivity (60, 61) or the identification
of cortical-gradient hierarchies (33, 58), by uncovering
higher-order interactions within the auditory system between
triplets and quadruplets of brain regions. In particular, at
higher-orders, irreversibility reveals synergistic interactions
between hippocampal, cingulate gyrus and sensory regions
for the distributed processing required for audition and long-
term recognition. As a result, our approach yields insights
that offer a new perspective on the flow of information
during audition. Whilst a recent analysis of these neural
recordings with standard methods was able to identify a
hierarchy of information processing in the brain during
long-term recognition (33), the introduction of the DiMViGI
framework appears crucial to uncovering the higher-order
and non-equilibrium nature of the interactions. Such insights
are opaque to traditional analyses but emerge from the
unique lens of non-equilibrium statistical physics.

The implications of the framework and the associated
results are multi-fold. Firstly, we go beyond aggregate
(4–7, 9, 10) or univariate (32, 47) measures of irreversibility,
expanding the exisiting quiver of techniques for studying
non-equilibrium in the brain to include a multilevel approach.
Our technique is able to capture differences in irreversibility
across scales in continuous time-series, inspired by recent
theoretical work for binary variables (28, 29), that is
nonspecific and can be applied to MVTS from any domain
to identify particular highly non-equilibrium interactions.
Our approach differs from Refs. (28, 29) as we do not
attempt to measure the unique contribution to the AoT of a
specific k-body interaction by discounting the irreversibility
of all sub-interactions contained within the tuple. Instead,
we measure the irreversibility of the tuple as a whole. In
Section 6 of the SI we consider an extension of our approach
to relate our framework more closely to the approach of
Refs. (28, 29), by measuring the unique contribution of each
k−body interaction, defined recursively as,

η(xi1 ,...,xik
) = ς(xi1 ,...,xik

) −
∑

Ω⊂{xi1 ,...,xik
}

ηΩ. [10]

However, we note that the exact decomposition of the EPR
presented in Refs. (28, 29) relates to discrete, Markovian
and multi-partite dynamics and thus does not apply directly
to continuous MVTS. Moreover, in Section 5 we show that
irreversibility in our method only decomposes in the case of
independent variables.

Our framework builds on the sustained interest in identifying
higher-order interactions in neural recordings and other
MVTS (62–66), particularly in information theoretic analyses
of brain data that reveal how higher-order functional
interactions shape neural dynamics (67–69). Notably,
many higher-order frameworks are either computationally,
or by formulation, restricted to studying either triplet

6 — www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Nartallo-Kaluarachchi et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

(63, 64, 66, 67) or system-wide interactions (62), whilst our
results extend easily to all possible levels in the system.
Our framework attempts to bridge the broader discussion
on higher-order mechanisms and behaviours in complex
systems (70–72) with techniques from non-equilibrium
thermodynamics (20) through the quantification and
interpretation of multilevel irreversibility. Finally, our
work further solidifies the visibility algorithm, and network
analysis of time-series, as an empirically useful tool in the
analysis of neural data (43, 73).

Despite these promising results, we note some nuanced
limitations in our framework. Whilst the visibility algorithm
and the degree distribution approach reduces the dimension
of the data, we are still computing an entropy between
high-dimensional distributions which is computationally
restrictive. This can be circumvented limiting the support
of the degree-distribution to exponentially improve
computational efficiency whilst minimally affecting numerical
accuracy (see SI). Nevertheless, analysing all possible
interactions yields a combinatorial explosion, hence we opt
for a coarse, low-dimensional, parcellation of the brain
that allows us to analyse the system at all possible levels.
However, the highlighting of individual tuples is most
meaningful when there is a strong intuition about the
nature of the interaction, which can be only be expected
in low-dimensional parcellations where ROIs are clear,
functionally-segregated brain areas. Additionally, we note
that our measure is undirected within the tuple, meaning
we cannot identify the direction of information flow as
one can with classical measures of causality (74, 75) or
some approaches to the AoT (7, 8). However, we note that
the AoT represents directed flow between states and not
variables, meaning it is not a direct measure of causality,
but instead capturing a distinct, but related, phenomena in
interacting dynamics. Finally, measuring the irreversibility
of finite-length time-series naturally induces a bias due
to the finite sampling of the state-space (4, 29). In order
to validate that the measured irreversibility emerges from
non-equilibrium dynamics and not from finite-data errors,
we employed both surrogate-testing using shuffled time-series
and sub-sampling approaches to validate the significance of
our results (see SI Section 4).

A key advantage of the DiMViGI framework is the
ability to scale between levels with a consistent approach.
Strictly local measures such as auto- and cross-correlations
are limited to individual and pairwise interactions (76, 77).
On the other hand, simply applying global measures to each
subset of variables in the time-series, such as coarse-graining
or using a model-based measure, yields an inconsistent
approach where different tuples cannot be compared fairly.
Our framework extends consistently to all levels thus yielding
directly comparable quantities at each level.

Conclusions

In this work, we have introduced the Directed Multiplex
Visibility Graph Irreversibility framework for measuring the
irreversibility of multivariate interactions at all levels within
a system. We applied this method to neural recordings
during a long-term auditory recognition task to study the

relative irreversibility of different interactions between
brain regions. Doing so, we were able to demonstrate the
hierarchical, higher-order organisation of brain dynamics
during tasks. This analysis suggests that reinforcement of
prior expectations during an auditory recognition task is
facilitated through a hierarchy of irreversible higher-order
interactions in the brain, an observation that we link
to both the mechanisms of predictive coding and the
hierarchical structure of the auditory system. Furthermore,
we highlighted the particular combinations of cognitive and
sensorial regions that are preferentially recruited during
audition and long-term recognition. This framework is
nonspecific and provides a general tool for investigating
higher-order interactions and non-equilibrium dynamics in
MVTS emerging from other complex systems.

Materials and Methods

Estimating degree distributions from finite samples. For each sample,
a MVTS, we construct the DMVG, defined by the multiplex
adjacency matrix, A,

A
[l]
ij =

{
1 if i → j in layer l
0 else . [11]

Then we calculate the in- and out-degree of each node in each layer

d̃
[l],in
i =

∑
j

A
[l]
ji , [12]

d̃
[l],out
i =

∑
j

A
[l]
ij , [13]

where d
[l],in
i , d

[l],out
i are the in-and out-degree of node i in layer l

respectively.

For a k−tuple (n1, ..., nk), we calculate P
(n1,...,nk)
in (d1, ..., dk) by

counting the number of nodes i, across all samples, where

d̃
[l],in
i = dl, [14]

for each l ∈ {1, ..., k} simultaneously and for dl ∈ {1, ..., dmax}
where dmax is the maximum degree of a node in the multi-layer
graph, and then dividing through by the total number of nodes in
all samples. We calculate the same for P

(n1,...,nk)
out (d1, ..., dk).

As we are using a finite number of samples, we then perform
distribution smoothing (78) to eliminate zeros in the empirical
distribution. Instead of using,

P (n1,...,nk)(d1, ..., dk) =
N

M
, [15]

where N is the number of nodes satisfying condition 14 and M is
the total number of nodes across samples, we average the empirical
distribution with a uniform prior via the following replacement,

P (n1,...,nk)(d1, ..., dk) =
1
2

N

M
+

1
2

1
dk

max
. [16]

Computing Jensen-Shannon divergence. We quantify the diver-
gence between the in- and out-degree distributions using Jensen-
Shannon divergence (JSD) which is a symmetrised version of
Kullback-Leibler divergence (KLD) that does not suppose a model-
data relationship (79). This is defined between two probability
distributions P, Q as

J(P |Q) =
1
2

D(P |M) +
1
2

D(Q|M), [17]

where M = 1
2 (P + Q) is an averaged distribution and D(·)

represents the KLD, given by,

D(P |Q) =
∑
x∈X

P (x) log
P (x)
Q(x)

. [18]
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As X represents the support of the distribution, it takes the
form {1, ..., dmax}k where k is the dimension of the probability
distributions and dmax is the maximum degree of a node in the
multi-layer graph. For computational feasibility, dmax can be
limited during the calculation of JSD, truncating the sum. For
5-order analysis, we limit dmax to 75. For a systematic analysis of
the effect of degree limiting see SI.

Magnetoencephalography (MEG) data.

Participants. The participant cohort consisted of 83 healthy volun-
teers made up of 33 males and 50 females with ages in the range 18
to 63 and a mean age of 28.76 ± 8.06. The 51 participants included
in this analysis included 22 males and 29 females with ages in
the range 18 to 63 and a mean age of 27.57 ± 7.13. Participants
were recruited in Denmark, came from Western countries, reported
normal hearing and gave informed consent before the experiment.
The project was approved by the Institutional Review Board (IRB)
of Aarhus University (case number: DNC-IRB-2020-006) and
experimental procedures complied with the Declaration of Helsinki
– Ethical Principles for Medical Research. After pre-processing,
the 51 participants with at least 15 non-discarded trials in the first
experimental condition were included in the analysis. Only trials
where participants correctly identified the sequence were included.
For those participants with more than 15 trials, 15 trials were
randomly sampled.

Experimental stimuli and design. We employed an old/new
paradigm auditory recognition task (33, 35, 36, 38). Participants
listened to a short musical piece twice and asked to memorise it
to the best of their ability. The piece was the first four bars of
the right-hand part of Johann Sebastian Bach’s Prelude No. 2 in
C Minor, BWV 847. Next, participants listened to 135 five-tone
musical sequences, corresponding to 27 trials in 5 experimental
conditions, of 1750 ms each and were requested to indicate if
the sequence belonged to the original music or was a variation.
Differences between experimental conditions have been described
in detail by Bonetti et al (33). We consider one experimental
condition, where participants recognised the original, previously
memorised sequences.

Data acquisition. MEG recordings were taken in a magnetically
shielded room at Aarhus University Hospital, Aarhus, Denmark
using an Elekta Neuromag TRIUX MEG scanner with 306 channels
(Elekta Neuromag, Helsinki, Finland). The sampling rate was 1000
Hz with analogue filtering of 0.1-330 Hz. For further details on
the data acquisition see SI.

MEG pre-processing. First, raw MEG sensor data was processed by
MaxFilter (80) to attenuate external interferences. We then applied
signal space separation (for parameters see SI). Then the data

was converted into Statistical Parametric Mapping (SPM) format,
preprocessed and analyzed in MATLAB (MathWorks, Natick, MA,
USA) using in-house codes and the Oxford Centre for Human Brain
Activity (OHBA) Software Library (OSL) (81). The continuous
MEG data was visually inspected and large artefacts were removed
using OSL. Less than 0.1% of the collected data was removed.
Next, independent component analysis (ICA) was implemented to
discard artefacts in the brain data from heart-beats and eye-blinks
(for details see SI) (82). Lastly, the signal was epoched in 135
trials, 27 trials for each of 5 experimental conditions and the mean
signal recorded in the baseline (the post-stimulus brain signal)
was removed. Each resulting trial lasted 4400 ms plus 100 ms of
baseline time.

Source reconstruction. We employed the beamforming method
to spatially localise the MEG signal (83). For details on the
beamforming algorithm and the implementation see SI.

Code and data availability. The code used to implement the
DiMViGI framework is available at https://github.com/rnartallo/
multilevelirreversibility.
The in-house code used for MEG pre-processing is available at
https://github.com/leonardob92/LBPD-1.0.

The pre-processed MEG recordings used in this analysis are freely
available at https://doi.org/10.5281/zenodo.13939016.
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45. AM Nuñez, L Lacasa, JP Gomez, B Luque, Visibility algorithms: A short review in New
Frontiers in Graph Theory. (InTech), pp. 119–152 (2012).

46. L Lacasa, V Nicosia, V Latora, Network structure of multivariate time series. Sci. Reports 5
(2015).

47. JF Donges, RV Donner, J Kurths, Testing time series reversibility using complex network
methods. Europhys. Lett. 102 (2012).

48. G Weiss, Time-reversibility of linear stochastic processes. J. Appl. Probab. 12, 831–836
(1975).

49. G Deco, et al., One ring to rule them all: The unifying role of prefrontal cortex in steering
task-related brain dynamics. Prog. Neurobiol. 227 (2023).

50. K Friston, Predictive coding, precision and synchrony. Cogn. Neurosci. 3, 238–239 (2012).
51. S Koelsch, P Vuust, K Friston, Predictive processes and the peculiar case of music. Trends

Cogn. Sci. 23, 63–77 (2019).
52. P Vuust, OA Heggli, KJ Friston, ML Kringelbach, Music in the brain. Nat. Rev. Neurosci. 23,

287–305 (2022).
53. K Friston, A theory of cortical responses. Philos. Transactions Royal Soc. B 360, 815–836

(2005).
54. K Friston, Hierarchical models in the brain. PLOS Comput. Biol. 4 (2008).
55. K Friston, S Kiebel, Predictive coding under the free-energy principle. Philos. Transactions

Royal Soc. B 364, 1211–1221 (2009).
56. TA Hackett, Information flow in the auditory cortical network. Hear. Res. 271, 133–146

(2011).
57. EM Rouiller, GM Simm, AE Villa, Y de Ribaupierre, F de Ribaupierre, Auditory

corticocortical interconnections in the cat: evidence for parallel and hierarchical
arrangement of the auditory cortical areas. Exp. Brain Res. 86, 483–505 (1991).

58. AJE Kell, DLK Yamins, EN Shook, SV Norman-Haignere, JH McDermott, A task-optimized
neural network replicates human auditory behavior, predicts brain responses, and reveals a
cortical processing hierarchy. Neuron 98, 630–644 (2018).

59. K Okada, et al., Hierarchical organization of human auditory cortex: Evidence from acoustic
invariance in the response to intelligible speech. Cereb. Cortex 20, 2486–2495 (2010).

60. M Lumaca, B Kleber, E Brattico, P Vuust, G Baggio, Functional connectivity in human
auditory networks and the origins of variation in the transmission of musical systems. eLife
8 (2019).

61. JH Lestang, H Cai, BB Averbeck, YE Cohen, Functional network properties of the auditory
cortex. Hear. Res. 433 (2023).

62. G Petri, et al., Homological scaffolds of brain functional networks. J. Royal Soc. Interface 11
(2014).

63. A Santoro, F Battiston, G Petri, E Amico, Higher-order organization of multivariate time
series. Nat. Phys. 19, 221–229 (2023).

64. MRR Tabar, et al., Revealing higher-order interactions in high-dimensional complex
systems: A data-driven approach. Phys. Rev. X 14 (2024).

65. RF Betzel, J Faskowitz, O Sporns, Living on the edge: network neuroscience beyond nodes.
Trends Cogn. Sci. 27, 1068–1084 (2023).

66. C Giusti, R Ghrist, DS Bassett, Two’s company, three (or more) is a simplex. J. Comput.
Neurosci. 41, 1–14 (2016).

67. TF Varley, M Pope, MG Puxeddu, J Faskowitz, O Sporns, Partial entropy decomposition
reveals higher-order information structures in human brain activity. Proc. Natl. Acad. Sci.
United States Am. 120 (2023).

68. AI Luppi, et al., A synergistic core for human brain evolution and cognition. Nat. Neurosci.
25, 771–782 (2022).

69. AI Luppi, FE Rosas, PA Mediano, DK Menon, EA Stamatakis, Information decomposition
and the informational architecture of the brain. Trends Cogn. Sci. 28, 352–368 (2024).

70. R Lambiotte, M Rosvall, I Scholtes, From networks to optimal higher-order models of
complex systems. Nat. Phys. 15, 313–320 (2019).

71. F Battiston, et al., The physics of higher-order interactions in complex systems. Nat. Phys.
17, 1093–1098 (2021).

72. FE Rosas, et al., Disentangling high-order mechanisms and high-order behaviours in
complex systems. Nat. Phys. 18, 476–477 (2022).

73. S Sannino, S Stramaglia, L Lacasa, D Marinazzo, Visibility graphs for fMRI data: Multiplex
temporal graphs and their modulations across resting-state networks. Netw. Neurosci. 1,
208–221 (2017).

74. CWJ Granger, Investigating causal relations by econometric models and cross-spectral
methods. Econometrica 37, 424–438 (1969).

75. T Schreiber, Measuring information transfer. Phys. Rev. Lett. 85 (2000).
76. IZ Steinberg, On the time reversal of noise signals. Biophys. J. 50, 171–179 (1986).
77. A Crisanti, A Puglisi, D Villamaina, Nonequilibrium and information: The role of cross

correlations. Phys. Rev. E 85 (2012).
78. CD Manning, P Raghavan, H Schütze, Introduction to Information Retrieval. (Cambridge

University Press), p. 260 (2008).
79. F Nielsen, On the Jensen–Shannon symmetrization of distances relying on abstract means.

Entropy 21 (2019).
80. S Taulu, J Simola, Spatiotemporal signal space separation method for rejecting nearby

interference in MEG measurements. Phys. Medicine Biol. 51, 1–10 (2010).
81. M Woolrich, L Hunt, A Groves, G Barnes, MEG beamforming using Bayesian PCA for

adaptive data covariance matrix regularization. NeuroImage 57, 1466–1479 (2011).
82. D Mantini, et al., A signal-processing pipeline for magnetoencephalography resting-state

networks. Brain Connect. 1, 49–59 (2011).
83. A Hillebrand, GR Barnes, Beamformer analysis of MEG data. Int. Rev. Neurobiol. 68,

149–171 (2005).

Nartallo-Kaluarachchi et al. PNAS — January 30, 2025 — vol. XXX — no. XX — 9


	Materials and Methods

