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Abstract

Residual stresses play a critical mechanical role in both industrial and
biomechanical applications. In biological tissues, residual stresses arise from
growth and remodeling processes under physiological or pathological con-
ditions and have been extensively modeled within the framework of non-
linear elasticity. These modeling efforts have enabled direct computation
of residual stress patterns based on phenomenological growth laws. How-
ever, experimental validation and feedback for these models remain limited
due to the inherent challenges in measuring complex stress distributions.
To address this limitation, we propose and develop an inverse approach for
estimating nonlinear residual stresses using information from an externally
loaded configuration. Specifically, the algorithm employs domain displace-
ment fields and externally applied loads as input data, which can be ex-
perimentally obtained through biaxial testing and digital image correlation
(DIC) techniques. This novel formulation and numerical scheme are rooted
in a physics-informed continuum framework that enforces universal princi-
ples of mechanics. To evaluate the framework, a synthetically generated
ground-truth solution serves as a reference, allowing assessment of the ac-
curacy of residual stress field reconstruction across varying levels of noise in
the input data. Performance metrics indicate a significant improvement in
reconstruction accuracy when multiple load cases and combined datasets are
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used. This approach paves the way for the formulation of growth laws and
residual patterns based on experimental data.

Keywords: Residual stress, inverse methods, tissue mechanics,
biomechanics, nonlinear mechanics, finite element method

1. Introduction

The concept of residual stress is generically used to define an initially
(pre)-stressed configuration in the elasticity boundary value problem, re-
ferred to a preloaded reference or initial configuration. By definition, it is
the stress in a material in the absence of external loads or body forces [1, p.
39]. The term ‘residual’ refers to internal physical process which motivates
the appearance of such a pre-stressed state. These stresses in industrial appli-
cations are typically unwanted and the result of a rapid cooling or quenching
process in which stresses do not have time to fully relax before the material
becomes a solid. The most extreme case of such stresses is found in Prince
Rupert’s drop where residual stresses transform a material to give it both
extreme strength and extreme fragility [2].

Yet, residual stresses play an important mechanical role both in industrial
and biophysical applications. The most popular sources of residual stresses in
metallic materials are due to manufacturing and fabrication processes, such
as joining techniques, i.e. welding, and surface treatments [3-5]. Although
such residual stresses usually have negative mechanical implications, they are
known to improve mechanical resistance against fatigue of alloys [6, 7].

In biology, since the seminal work of Fung [8], residual stresses are known
to be crucial to the proper function of tissues and organs and are precisely
tuned and maintained through life (see [1] for examples in bacterial, fun-
gal, plant, animal, and physiological systems). Therefore, significant effort
has been dedicated to investigating the origins of residual stresses in biolog-
ical tissues, understanding their biophysical roles, and unraveling the com-
plexities of these stress states to establish their connection to physiological
(mechanobiological) functions [9-12]. There is a vast literature dedicated
to the investigation of residual stress patterns as a consequence of a growth
process in soft biological tissues, and their corresponding continuum mod-
eling and numerical finite element development [13-16]. Residual stresses
have been investigated in growing skin [17, 18], growing tumors [19-21] bi-
ological membranes [22-24], tendons [25, 26], brain tissue [27, 28] and their



abnormalities [29], cardiovascular tissues [30-38] and associated pathologies
[39, 40] such as hypertension [41]. The impact of residual stresses has also
been explored in bone (hard) tissue biomechanics [42].

The bulk of the studies about residual stresses provide either modeling
techniques or numerical approaches to the problem but are mostly restricted
to direct (or forward) methodologies, in which residual stress patterns can
be computed in tissues after calibration of model parameters. However, the
accuracy and usefulness of these direct approaches depend on the availability
and quality of data to fit phenomenological laws of growth /remodeling. The
most popular method to experimentally quantifying residual stresses in ar-
teries is the opening angle test, and was introduced more than three decades
ago [43, 44]. Since then, this assay and others have been used to estimate
uniform pre-stresses to be used as an input data in growth of cardiovascular
tissue models [34, 45-48]. However, direct measurement of nonuniform resid-
ual stress patterns or their validation through models have not been reported
in the literature. The goal of this article is to develop inverse techniques to
infer the residual stress field from experimental measurements.

Inverse methods in continuum mechanics aim at computing complex spa-
tial distributions of variables and parameters which are usually assumed to
be known in direct boundary value problems. In the field of biomechanics,
inverse methods have been applied to compute traction forces by cells in
artificial substrates [49-55], to reconstruct stiffness patterns in degradable
matrices [56], and to map stiffness in tissues (i.e. elastography) [57] and
cells [58-60]. A variety of inverse formulations and applications, incorporat-
ing constraints and/or regularization, have been proposed in the literature
(61, 62]. However, to the best of the authors’ knowledge, no studies have yet
addressed residual stress following the inverse modeling statements used in
the referred works.

Inverse techniques typically require the measurement of domain displace-
ment fields as an input data. Remarkably, nowadays this information can be
routinely obtained in tissues by means, for instance, of Digital Image Cor-
relation (DIC). DIC is an enabling methodology to map displacement fields
and has been used, among others, in abominal aorta [63], skin [64], and bone
tissue [65, 66]. Interestingly, DIC data were used in a mixed computational-
experimental approach to estimate 3D residual stress fields in arteries [67].

In this paper we present, for the first time, an inverse approach for quanti-
fying complex nonlinear residual stress patterns. The formulation is designed
to search an initial residual stress state, established in a continuum frame-



work, through the imposition of universal principles (i.e. physics-informed)
in two configurations, namely: reference and externally loaded configura-
tions. The continuum equations are numerically elaborated resulting in a
two-steps algorithm. As far as we know, both the formulation and the nu-
merical scheme are novel. Although this initial study is motivated by the
recovery of residual stresses in tissues, and hence limited to 2D cases by
DIC, the same framework can also be applied to 3D and applications found
in industry if the data is available.

The paper is organized as follows. Section 2 presents the rationales and
preliminaries of the study, including the feasibility of reconstructing com-
plex nonlinear residual stresses. Section 3 develops the continuum inverse
formulation as well as the numerical discretization, linearization and solver
algorithm. Section 4 describes the case for analysis, and shows and discusses
results of inverse reconstruction of variables and associated errors versus a
ground truth solution. Finally, some conclusions are drawn at the end of the

paper.

2. Background

We first review the nonlinear formulation of residual stresses at (elastic)
finite strains. Although the proposed inverse formulation is not restricted to
any particular source of residual stresses, the presented examples of appli-
cation will consider that residual stresses are the consequence of an internal
growth process. Formally, the same analysis holds for any anelastic pro-
cess. The feasibility of recovering residual stresses in nonlinear solids using
an externally loaded configuration is also demonstrated.

2.1. Nonlinear modeling of residual stresses

We assume that residual stresses are the result of an internal nonlinear
and inhomogeneous growth process, characterized by a deformation gradient
tensor FY defined in an initial domain B; (see Figure 1). After growth, a
residual stress state o usually arises as a phenomenological response to nat-
urally circumvent the kinematic incompatibility of such a growth within the
body. Indeed, the deformed configuration By can be kinematically decom-
posed via a stress-free and incompatible configuration B} (see Figure 1), such
that 0% = 6%(F*), with F* being the (assembly) deformation gradient tensor
from the incompatible (stress-free) to the deformed (reference) configuration.
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Figure 1: Schematics of the different configurations used in our formulation to recover non-
linear residual stresses from an auxiliary and externally loaded configuration. We assume
that residual stresses (o in the reference configuration By) are the result of an internal
growth process, characterized by deformation gradient tensor F? in an intial domain Bj.
On the other hand, the reference configuration can be kinematically decomposed through
an incompatible configuration Bj, and assembled into configuration By by deformation gra-
dient tensor F'*. Finally, an additional externally loaded configuration B; by boundary
(Cauchy) traction vector ", and deformation gradient tensor F¥, is established.

F*® does not arise from a real displacement field, although we will define after
this displacement field numerically in our algorithmic development.

The right Cauchy-Green strain tensor C%, and the second Piola-Kirchhoff
stress tensor SY are defined as,

ov(C
co— g, g0 o |2VO) . (1)
0C | e
Then, residual stresses in the reference configuration B, (see Figure 1) are
expressed as the push-forward of the second Piola-Kirchhoff stress tensor as

follows:
0 2 ov(C)
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with J@ = det(F*).



In order to recover residual stresses from the deformed configuration B
after growth, using the inverse approach of Section 3, a loaded configuration
B1 needs to be established and characterized. Indeed, we assume that data
from external loading " and kinematics field w”, i.e. mapping from B,
to By (see Figure 1), can be obtained using mechanical testing and DIC,
as explained in [63]. We see " and u”, the data, as input quantities in
our algorithm (see Section 3). Then, the elastic deformation gradient F¥is
defined as, B

E 8331 ou
F _aXO_I+8X0 (3)
Finally, the Cauchy stress tensor o' in the loaded configuration (see Figure
1) can be analogously defined from Equations (1-2):

ol= 2 p {a\g(CC)} o FeT (4)

Je
with C° = F¢" . F°, F® = F¥ . F* and J¢ = det(F°).

In these expressions W is a given hyper-elastic strain-energy density func-
tion. We assume in our study an incompressible neo-Hookean behavior of
the form

¥(C) = 5L —3) (5)

where [ is the first invariant (trace), of the right Cauchy-Green deformation
tensor C. u is the shear modulus.

2.2. Proof of concept

Our goal is to propose an inverse recovery of residual stresses using, as
input data, information about boundary applied loads and body motion from
a reference to a loaded configuration. We demonstrate in this section the
feasibility of our approach.

As a proof of concept, we consider an unconfined solid with a circular
region of interest (ROI), which undergoes a growth process limited to the
ROI domain (Figure 2a). The elastic response of the material is modeled
by a hyperelastic incompressible neo-Hookean law (Figure 2b) and growth is
modeled using an isotropic but inhomogeneous deformation gradient tensor
F? following, in the initial domain, a sigmoid function as shown in Figure
2c. The growth problem is solved using the finite element (FE) software
Abaqus Simulia. Then, from the initial configuration (Figure 3a) we obtain
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Figure 2: Proof-of-concept example. (a) A nonlinear and inhomogeneous growth pro-
cess is induced at the orange location within an unconfined ROI of diameter D. The
solid is modeled as a hyperelastic plane-stress incompressible body. (b) Constitutive neo-
Hookean model representing dimensionless pressure p/E (F being the Young’s modulus)
versus surface change from reference area Ay. (¢) Growth is spatially modeled by a defor-
mation gradient tensor F'¥ using a nonlinear function () centered at (D/4, D/4) with an

exponential decay according to a sigmoid function. Colors represent the values of 7y in the
ROL

a deformed configuration with a residual stress state after growth represented
in Figure 3b. Using this prestressed body as a reference configuration, an
external elastic deformation is applied to obtain a new loaded configuration.



The strain state of this loaded configuration is shown in Figure 3c both
assuming a linear and nonlinear material behavior. Interestingly, differences
in the strain field can be observed when the nonlinear model is loaded from
a pre-stressed configuration versus a stress-free one. However, no differences
are found in the strain field, being independent of the initial stress state, when
using a linear model. Therefore, residual stress recovery from a loaded and
deformed configuration is limited to solids that show a nonlinear constitutive
behavior. In fact, as far as input displacement fields are usually noisy, the
efficiency of inverse algorithms improves as the differences between these
strain patterns increase versus a reference one [60].

3. Inverse physics-informed recovery of residual stresses

We now give details on our inverse physics-informed formulation for the
recovery of residual stress patterns. The mathematical description is split
into the continuum formulation, finite element (FE) numerical discretization,
linearization, and solver algorithm.

3.1. Continuum formulation

We assume a known reference configuration (B, in Figure 1) subjected
to an unknown residual stress state o®. To unravel such a stress field, a
known (measured) external load (£" in Figure 1) is applied in order to get a
loaded configuration (B; in Figure 1). The motion from the reference to the
loaded configuration is characterized by the displacement field u” (Figure
1). In practice, this field may be obtained by DIC methods, for instance. We
assume that the measurement of this displacement field is noisy. Hence, we
rename this (noisy) quantity to u®*. Both " and u”* are input data in our
formulation. Note that the problem, as stated, is independent on the source
of the residual stress state.

In our formulation we search for the closest displacement field u” to the
measured one u”* together with the residual stress field o, while satisfying
fundamental physical principles such as compatibility and equilibrium con-
ditions, in both the reference and loaded configurations. In the absence of
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Figure 3: Results of the proof of concept example shown in Figure 2. (a) Initial config-
uration (Bj in Figure 1) and growth, according to the problem stated in Figure 2. (b)
Deformed configuration after growth (Bp in Figure 1), showing residual (dimensionless)
hydrostatic pressure distribution (normalized versus E). Also, a null residual stress state
is considered in the second row. (c¢) First principal component of the logarithmic strain
tensor in the loaded configuration (B; in Figure 1), after applying a 0.1 - D normal dis-
placement on the boundary (D being the diameter of the ROI in the initial configuration).
The strain measure is shown for a nonlinear (neo-Hookean) and linear material modeling,

when loading in the reference configuration from both pre-stressed and stress-free condi-
tions.

@

body forces, this condition can be mathematically expressed, as

1 A
avgmin 3 [u? — uP|+ 5 [ (900" do, )
o'o,uE 2 2 Bo
s.t.g
Vo x F* =0, VO'O'OZO € By, o’ n’=0 GFBO (7)

VixFE=0, V,-0'=0 € By, o' -n'=1" € I'n, (8)



where n° and n! are the outward normals to By and By, respectively. The
second term in Eq. (6) represents a L — 1 (Thikhonov) regularization term
which penalizes non-smooth stress fields, with a regularization parameter
A. This parameter will be calibrated in our study following the L—curve
criterion [68]. The stress fields 0 and o' are obtained from a hyperelastic
strain energy density function, according to Eqgs. (2) and (4), respectively.

Note that physical equilibrium and compatibility conditions are imposed
in a strong form in the continuum framework shown in (7-8). For conve-
nience, we also express these conditions in a weak form, using the principle
of virtual work to obtain

. 1 N A
argmin S |[u” — w3+ [ [|[Vea?|[5dv (9)
O'O,uE 2 2 BO
s.t.
W2(a?, u’) = / o’ 0e’dv =0 (10)
Bo

Wit o, 5ul) = [

o'(u? o) - de'dv — / " outds =0, (11)
B

g,

WY represents the virtual work (spatial version) developed by real internal
stress o with virtual strain field §€° in the reference configuration By. On
the other hand, W! represents the virtual work (spatial version) developed by
real internal stress o' and external boundary tractions £ with virtual strain
de' and displacement du! fields, respectively, in the loaded configuration
B;. The strain fields 6e® and de' are compatible (virtual) fields with virtual
displacement fields du’ and du' through the following relation [69]:

selt = % (Vgou" + Viou™), K=0,1. (12)

Note that due to the the absence of external forces in (10) and hence the ab-
sence of external virtual work, the residual stress field must be self-balanced
in the reference configuration. The internal and external virtual works must
be identical as seen in Eqgs. (10-11). Therefore, the virtual fields du®, du'
(and corresponding fields 6e”(du?), de'(du') in Egs. (10)-(11) through Eq.
(12)) can be interpreted as Lagrangian multiplier fields, and included in the

10



cost function (9) as follows:

1 A
argmin  —||[uf —u® |3+ 2 [ [|Voa?||2dv+W0 (6, 6u’) + W (P 60, dul).

0.07uE 2 2 Bo
(13)

3.2. FFE discretization and numerical scheme

The continuum fields ©”, u®*, 6%, Ju® and Ju' are discretized and in-

terpolated within each FE element as u” ~ N. . uf u® ~ N .uf*
o’ ~ N . ¥ du’ ~ NV . fuf and du! ~ N, - sul. u?, uf* o9, su and
du} are discrete node-valued vectors, which contains the components of each
(discrete) variable at the nodes i of the element. N° N! and N? are the
corresponding shape (interpolating) functions within the element referred to
their corresponding reference (0) or loaded (1) discrete configurations. Using
(12) together with the defined discretized quantities yields 6e® ~ B -6u? and
6e' ~ Bl - su}, with B? and B} being the gradient matrices of interpolating
shape function matrices N and N, of the element in the discretized reference
and loaded configurations, respectively [70, 71]. Using this discretization and

introducing it in (13) yields:

argmin ¢ (14)
o0 u¥
with
L
I LR
k=1
\ NE
i) 2 (/ (B )" (B, ag)d“) (a7, 0u)) + W(uf, o7, du;),
k=1 By,
(15)

where BY is the gradient matrix of interpolating shape function matrix N2
of the element k in the reference (discretized) configuration By . NE is the
number of elements of the FE mesh. In addition, we have

NE

W(e?,0u’) => ( / (o) -Bldv) " - 5u§> = (F™T.5u’,  (16)
Bo,

k=1

11



and

NE
W (u?, !, 6uj) = Z </ (or -Bldv)'" - 6ul — / (NL-T"ds)" - 5u})
k=1 Bk FBl,k
— (Fint,l o FeXt,l)T . 6u1’ (17>

where T" is the discretized boundary traction vector in the loaded config-
uration in Eq (17). F™° F™! and F*"! are internal and external global
vectors of forces, after FE assembly, in Eqs. (16-17) [70, 71]. Finally, after
FE assembly Eq. (15) yields

1 A= ~
o= "™ (W —u) 4 DB, e") (B, o)

+ (FO.L, - ou’ + (F., — F!

T 1
int ext) ’ 6u ’

(18)

E Ex
)

where u?, uf*, 6%, Ju® and du' are node-valued global vectors which contain

the components of the variables at each FE node of the mesh. Bg is the global
gradient matrix after assembly of element matrices B.

Eq. (14) has a minimum stationary solution at d¢(u, o, 6u®, sju') = 0.
Hence, using (16-18),

19J0) B e OW!
W =0—>u —u + W =0
int,1 ext,1
—>uE—uE*+a§E -5u1—8(,1;E out=0 (19)
u u
. ~ 0 1
%:O%ABST-B(;-GO—I—%WO (‘;WO:O—>
o o o
0T ~0 8Fint’0 aFint,l
— B, ‘B, -o"+ 950 ou’ + 950 su' =0 (20)
a(b awl int,1 ext,1
pout ~ 07 ggu “ O FT S FT=0 1)
a¢ aWO int,0
85u020—>85u020—)Ft’:0 (22)
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The equations above give the gradient of ¢. They can be summarized as
follows,

Sp(u”, g’ ou’ ou') =0

int,1 ext,1
U.E — uE* + gu—E . 5111 — aguE . (5111 0
~ 0T ~ 0 int,0 int,1
L1 2B, ‘B, o+ % ou+ 8- 6ul | _ ) O
]:;wint,i9 - Fext,l 0
Fint,o 0
(23)

Eq. (23) is a set of nonlinear equations which can be linearized by using a
Newton-Raphson procedure or, alternatively, it can be solved using iterative
solvers such as L-BFGS in other inverse applications [57, 60, 72]. However,
both procedures require the evaluation of complex tangent matrices, such
as 8];:;’1. To circumvent this issue, a two-step algorithm is proposed and
elaborated in the next section.

3.3. Linearization and algorithmic scheme

To demonstrate the power of the the mathematical formulation presented
in previous sections, we consider the case of biaxially loaded samples. Im-
portantly, the numerical approach can be adapted to other load setups with
minor changes.

The reference and biaxially loaded configurations are discretized as shown
in Figure 4. An incompatible stress-free configuration is also used in the
proposed numerical scheme. This configuration is numerically built using the
FE element mesh of the reference and loaded configurations with duplicated
nodes.

First step

Equations (19) and (21) are first linearized and subsequently analyzed
numerically as an initial step. We collect and adapt these equations together

13
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Figure 4: Discretized reference, loaded and stress-free (incompatible) configurations. An
initial residual stress state o is present in the elements of the reference configuration.
Biaxial test input data Fx,Ux, Fy,Uy apply on the nodes at the location of the grips.
Displacement (discrete) input vector u” might be obtained by means of DIC techniques.
The stress-free configuration is numerically built using the FE mesh of the reference and
loaded configurations with duplicated nodes. X% X' and X" are vectors that contain
the coordinates of the FE mesh of the reference, loaded and stress-free configurations,
respectively.

with the biaxial load conditions as follows,

aFlntl
E Ex 1
u, —u,+ [—} -6u; =0 (24)
out |, ¢
F/' =0 (25)
i | Ul [uk L] = Ul (26)
i | =uv e [uk L] = Ul (27)
Ny— N+
Z Fextl _ FX|€7 [Fext 1} _ FX|£ (28)
v s
Z Fextl — FY’[, Z Fextl _ FY’[, (29)
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Figure 5: Two-step solver algorithm for a fixed load case. (a) First step: uf is iteratively

solved from pre-stressed configuration X°. &° represents a previously converged residual
stress vector of the second step algorithm (see overall numerical scheme in Box 1). The
noisy configuration from measured noisy displacements u”* can be seen in shadows. (b)
Second step: Incompatible mesh Xg is obtained by applying the motion uf* Eoaf

obtained after convergence in the first step algorithm (a), to a previously converged stress-

—u

free configuration X’ (see overall numerical scheme in Box 1). Then &° is obtained in
the reference configuration X° following the numerical scheme indicated in Box 1.

In biaxial tests combined with DIC, it is routine to obtain multiple stacks
of data corresponding to different load cases, for instance, those including in

a displacement loading ramp along the different axes. Therefore, [uﬁx_]g,

15



[uﬁ +L, [uﬁyf]g and [uﬁw]e, in Egs. (26)-(27) contain the components

X

of the displacement vector uZ for each load case ¢ at the FE nodes attached
to the left, right, top and bottom loading grips (see Figure 4), and they
must be equal (i.e. compatible) with the measured motion of the grips (for
each load case £) on these nodes through vectors Ux|,, Uy|,. Moreover,
Eqgs. (28)-(29) impose the equilibrium of overall grip forces Fx|,, Fy/|e, for
each load case ¢, with the resultant external forces vector [Ff’(t’l] , on these
nodes. Note that nonuniform nodal forces along the boundaries of the grips
are therefore allowed in the formulation, this feature being typically present
in real biaxial experiments. nNx-, nNx+, nNy- and n/Ny+, are the number
of nodes attached the left, right, top and bottom loading grips (see Figure
4). As a result, Eqgs. (24-29) have to be solved for each load case £.

Eqgs. (24) and (25) are linearized using a Newton-Raphson method as,

by ] ]
K'(u?,&") 0 . Loup f,
Ex

u
{ —Fijnt’l(u]E, %) + K'(uf, &%) - u¥ }e ’ (30)

where K' is the FE tangent stiffness matrix of (11) evaluated at previous
iteration step j for vector uf, and for a previously converged residual stress
vector ¥ at the last iteration of the second step algorithm (see Figure 5a
and overall numerical scheme in Box 1). Note that as a simplification, the
derivative of the tangent stiffness matrix has been neglected in (30) during
the linearization of (24). Biaxial load conditions are introduced in (26-29).
Other load conditions may be included just by substituting this set of equa-
tions by the specific boundary conditions at hand. Eqs. (26-29) are imple-
mented in (30) by means of Lagrangian operators, as is done for prescribed
displacements and forces in the FEM [71]. The iterative procedure in (30)
terminates when the relative difference [|uf,; —uf||/[[uf|| falls below a pre-
defined tolerance. It is important to note that Eq. (30) must be solved and
fully converged for each load case ¢.

Second step

Linearization of Egs. (20) and (22) can be challenging, or at the very
least intrusive, within a conventional finite element (FE) framework, as it
requires the handling of highly unconventional matrices. As an alternative,

16



we propose addressing and solving the following (continuum) problem with
a second algorithm:

1 A
argmin —HO’O — &“H% + = HV00'0||§dv (31)
0-0 2 2 BO
s.t.
W2, u’) = / o’ - 0e’dv =0, (32)
Bo

where 6° represents a residual stress state originating from the motion of
the stress-free (incompatible) configuration to the reference configuration (see
Figure 4). Details about the computation of this quantity along the algorithm
are given below. Equations (31) and (32) are discretized and processed in a
manner analogous to the procedure outlined in Section 3.2. Subsequently,

0 ~O\NT 0 ~0 ~0T ~ 0 0 aFint70
— . — AB_ -B_-
(6"=6") (6" —6")+ B, .o+ 550

ou’, =0 (33)
Ft0 =0, (34)

Eqgs. (33-34) are linearized with respect to o' and du® using a Newton-
Raphson method:

~0T ~0 ~0T .
LeaBy B Bl [k} Lot ] (35)
B, 0 5“24—1 0 7

where BZ is the global gradient matrix after assembly of element matrices BY
in (16). &7} is computed in the reference configuration X° as a result of the
motion from the incompatible mesh X? to X° (see Figure 5b). Incompati-
ble mesh XY is obtained by applying the motion u?* — a?, obtained after
convergence in the first step algorithm, to a previously converged stress-free
configuration x” (see Figure 5b and overall numerical scheme in Box 1).
Since Eq. (35) is linear, it is solved in a single step.

17



Box 1: Two-step algorithm for residual stress recovery.
0. Initialize variables:

WHILE [|o,, — a}]l/llo}_o|| < TOL
FOR EACH LOAD CASE ¢
1. First step
WHILE [[uf, , — uf,
Solve Eq. (30).
j—J+1
END WHILE
Update variable 1’1€E = ufe
2. Second step
m Obtain Xgl,tz = X" 4+ uf* — ul’ (see Figure 5b) using
converged ﬁEE .
m Apply the displacement field X° — X%ﬁz from ng to X
(see Figure 5b) and obtain 6'2,5 by means of a FE simu-
lation.
END FOR

9 mean [6’275]

m Solve Eq. (35). and obtain of_,.
» Update variable 60 = 02+1.

|/[[uf,ll < TOL

m Obtain the new updated stress-free configuration X"
through a relaxation step in a FE simulation from stressed
&0 configuration X° using incompatible mesh with du-
plicated nodes.

k< k+1
END WHILE

4. Results and discussion

Based on this algorithm, we present results on the inverse reconstruction
of variables in the reference and loaded configurations, with special emphasis

18



to the recovery of residual stresses. First, we formulate the problem. Then,
we show results using noise-free and noisy input displacement data.

4.1. Example of application: biaxially loaded sample

We consider a square sample of size L x L. The sample is subjected to a
nonlinear growth process in an ellipsoidal region (Figure 6a). Growth (Figure
6b) is modeled through a multiplicative deformation as defined in Figure 2.
Once a deformed (reference) configuration is obtained after growth, the sam-
ple is biaxially loaded (Figure 6a) by means of FE simulations (mesh shown
in Figure 6¢), The biaxial (virtual) sample is loaded along the boundaries
using rigid grips, and the overall force and deformation along the two axis
(vertical and horizontal) are recorded for different load cases (Figure 6d).

Under the hypothesis that the real biaxial device, load cells and grip
motion are well calibrated and aligned, we assume that noise-free overall
forces and deformations are obtained in the experiments for all the load
cases. Overall forces and deformations Fx|s, Ux|e, Fy |, Uy e (Figure 6a) for
the different load cases ¢ are one of the input data in our algorithm, as
can be seen in Eqs. (28)-(29). Similarly, we generate discrete displacement
fields u/* in the sample domain for each loading cases ¢ which make the
second stack of input data according to Eqs. (26-27). These displacement
fields are synthetically generated via FE simulations and these are considered
the ground truth solution. Using this noise-free ground truth displacements
first, and then adding Gaussian noise; residual stress, displacement and strain
fields are reconstructed and shown in next sections. All the FE simulations
were performed using the mesh shown in Figure 6c.

4.2. Noise-free displacement input data

The growth problem illustrated in the square sample of Figure 6a is sub-
jected to biaxial loading from the reference configuration, following growth,
as depicted for load case 1 in Figure 6d. The various components of the
residual stress tensor in the reference configuration, along with the compo-
nents of the displacement field and the logarithmic strain tensor in the loaded
configuration, are shown in Figure 7. These results serve as the ground truth
solution for the specified load case 1.

The residual stress tensor in the reference configuration, along with the
displacement field and logarithmic strain tensor in the loaded configuration,
are subsequently reconstructed. The quantities F'y, Uy, Fy, and Uy obtained
from the biaxial test, as well as the noise-free (ground truth) displacement
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Figure 6: Example of application for the inverse algorithm. (a) Biaxially loaded sample
as an example for inverse recovery of residual stress, displacement and strain fields. A
growth process is produced at the ellipsoidal location marked with orange color. Growth
is modeled analogously to the example shown in Figure 2. (b) Values of v (Figure 2) of
the deformation gradient in the sample. (¢) FE mesh used in the different simulations.
(d) 2-axis deformations applied through the grips (considered as rigid) for the different
load cases (LC).

field for load case 1, are used as input data for our inverse algorithm. The
results of this noise-free inverse solution are presented in Figure 7. A perfect
recovery of the variables compared to their ground truth counterparts is
observed, demonstrating the accuracy of our inverse approach.

4.3. Noisy displacement input data

In this case, the input quantities of the inverse algorithm obtained in the
biaxial test are 'y, Ux, Fy, Uy t, and the noisy displacement fields for differ-
ent load cases. Noisy displacement field are generated by adding Gaussian
noise to the ground truth solution for each load case as follows,

o —uE T . Juf ]

uf o (36)

where uf’* and uf’GT are the noisy and ground truth displacement vectors,
respectively, that contain the different components of the displacement field

at each node of the FE mesh for each load case k. The random-valued vector
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Figure 7: Ground truth and noise-free inverse reconstructed quantities by the inverse
algorithm for the example of application shown in Figure 6. (a) Dimensionless components
(over E) of the Cauchy’s residual stress tensor in the reference configuration. First row:
ground-truth solution. Second row: reconstructed solution by the inverse algorithm. (b)
Dimensionless components (over L) of the displacement field in the loaded configuration
of the biaxial test for the load case 1 (Figure 6). First row: ground-truth solution. Second
row: reconstructed solution by the inverse algorithm. (¢) Components of the logarithmic
strain tensor in the loaded configuration of the biaxial test for the load case 1 (Figure
6). First row: ground-truth solution. Second row: reconstructed solution by the inverse
algorithm.

&, follows a Gaussian distribution N(0, s), with standard deviation s. This
vector & is scaled for each load case k, as seen in Eq. (36), over load case 1 in
order to keep similar errors versus the ground truth solution for the different
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load cases.

The synthetically generated noisy displacements model experimental ac-
quisition of displacements using, for instance, DIC techniques. Two different
levels of noise are considered in the study: a high noise level with parame-
ter s =5-107*- L in the Gaussian distribution, and a low noise level with
parameter s = 2- 1074 - L. Moreover, we define the following error metric to
estimate the error of the strain field introduced by noisy displacement fields:

T, 11‘77' yyﬂ yyﬂ $y,7, xyﬂ

2 2 2
NE (gE,GT _ B ) X (EE,GT _ B > I <€E,GT _ oBx )

Err E (%) = 100- | )

2 2 2
: E.GT E,GT E.GT
= (5190,1‘ ) + <5yy7i > + (Ewy,i )
(37)
EGT _EGT _EGT
where €, 7" e, 07" e, and el by, ebx, are the components of the log-

arithmic strain tensor at each element i, derived from the ground truth and
noisy displacement fields, respectively. NE is the number of elements of the
FE mesh.

Figure 8a shows the input noisy displacement field, and corresponding
strain tensor fields (Figure 8b) for load case 1 (see Figure 6) and the different
noise levels. Moreover, the errors introduced in the strain field by noise in
the displacement field, computed according Eq. (37), are shown in Figure 8c
for each load case. The mean errors in the strain field for all the load cases
is set to 29.4 (%) for the high noise level and to 11.7 (%) for the low noise
level.

Figures 9 and 10 present the reconstructed residual stress fields in the
reference configuration for high and low noise levels, respectively. The re-
construction used varying numbers of input data stacks corresponding to
different load cases. For comparison, the ground truth solution is included in
both figures. It is clear that the reconstructed residual stress fields converge
toward the ground truth solution as the number of load cases in the biaxial
tests—and consequently the number of input data stacks—increases. This
trend is consistent across both noise levels and can be interpreted similarly
to machine learning techniques, where expanding the data (training) space
improves the solution quality.

As expected, the reconstructions are more accurate in the low-noise sce-
nario. Overall, the reconstructed residual stress fields shown in Figures 9
and 10 are qualitatively robust across all noise levels and input data config-
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Figure 8: Generated noisy input data for the inverse algorithm. (a) Dimensionless com-
ponents (over L) of the displacement field in the loaded configuration of the biaxial test
for the load case 1 (Figure 6). First row: high noise level case. Second row: low noise
level case. (b) Corresponding components of the logarithmic strain tensor in the loaded
configuration of the biaxial test for the load case 1 (Figure 6). First row: high noise level
case. Second row: low noise level case. (c¢) Errors introduced in the logarithmic strain
field by added noise in the displacement field, computed according Eq. (37), for each load
case. Mean values are represented by dashed lines for each noise level.

urations. Notably, excellent results are achieved when more than one stack
of data (load case) is used for reconstruction.
In order to quantify the error of the residual stress fields for the different
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Figure 9: Dimensionless components (over E) of the Cauchy’s residual stress tensor in the
reference configuration. Different load cases, and hence different number of stacks (Ns)
of noisy input displacement data (high noise level) were used for reconstruction. Load
case 1 was used for Ns=1; load cases 1, 4, 13 and 16 were used for Ns=4; load cases 1, 3,
4,9, 11, 12, 13, 15 and 16 were used for Ns=9; all load cases were used for Ns=16 (see
Figure 6d). The first row represents the ground truth solution for comparison purposes.
Regularization parameter A = 5-10~° (dimensionless value) according to the L-curve of
Figure S1.

cases considered in Figures 9 and 10, the following metric is introduced:

2 2 2
0,GT 0 0,GT 0 0,GT 0
NE Gl b oL
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Err S (%) = 100- | 5 5 5 ,
5 )

24 (38)




Ns=16
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Ns=1

Figure 10: Dimensionless components (over E) of the Cauchy’s residual stress tensor in
the reference configuration. Different load cases, and hence different number of stacks
(Ns) of noisy input displacement data (low noise level) were used for reconstruction. Load
case 1 was used for Ns=1; load cases 1, 4, 13 and 16 were used for Ns=4; load cases 1, 3,
4,9, 11, 12, 13, 15 and 16 were used for Ns=9; all load cases were used for Ns=16 (see
Figure 6d). The first row represents the ground truth solution for comparison purposes.
Regularization parameter A = 2 - 107° (dimensionless value) according to the L-curve of
Figure S2.

0,GT _0,GT _0,GT
’ ) ’ e.i> Oy Ouy i are the components of the Cauchy’s

where Ozayi »Oyy,i ) Owy,i and o yy,i7 7 Ty,e
residual stress at each element i, of the ground truth and recovered from noisy

displacement fields, respectively; and NE' is the number of elements in the
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FE mesh. The errors of the recovered stress fields from noisy displacement
fields, computed according Eq. (38), are shown in Figure 11 for each noise
level and stacks (load cases) used for reconstruction. As observed in Figures
9 and 10, the error in the reconstruction is always lower for the low noise
level case with a rapid decay as the number of stacks used for reconstruction
increases. The lowest errors are achieved when all the load cases in the bi-
axial test are considered (Ns = 16), being 17.8% for the high noise level and
to 12.8% for the low noise level for the defined error metric. Regardless of
these values, residual stress reconstructions considering all load cases show a
very good agreement against the ground truth solution as shown Figures 9
and 10.

45 — : :
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40 N \ = B = Low noise level |
\
\
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Figure 11: Errors of the recovered residual stress fields from noisy the displacement fields,
computed according Eq. (38), for each noise level and stacks (load cases) used as input
data for reconstruction.

Although the present study is focused on the recovery of residual stress
patterns, results regarding reconstruction of elastic displacements and corre-
sponding strain fields are also of interest as part of the developed method-
ology. In this sense, Figures 12 and 13 show the recovered elastic strain
fields in the loaded configuration for the high and low noise levels, respec-
tively. Results are presented just for the first load case (see Figure 6d), and
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analogously to the residual stress, results are shown for different number of
stacks of input data, corresponding to different load cases. The ground truth
solution is included in Figures 12 and 13 for comparison purposes. Again,
we observe the same improvement and quality of reconstruction of the strain
fields with the number of stacks and noise levels. The errors of the recovered
strain fields from noisy displacement fields versus the ground truth solution,
computed using recovered strain fields in Eq. (37) instead of noisy fields, are
shown in Figure 14a (high noise level) for all the considered stacks used for
reconstruction and corresponding load cases (see Figure 6d), and in Figure
14b for the low noise level case. As in the case of reconstructed residual
stress patterns, the error in strain reconstruction shows a rapid decay as the
number of stacks used for reconstruction increases, being always lower for
the low noise level as expected. According to the errors shown in Figure 14,
the quality of the recovered elastic strain field is very good for all the cases
considered. Moreover, we observe a significant improvement of the recovered
strain fields and errors in Figures 12, 13 and 14 versus the input strain fields
and errors shown in Figure 8. We also observe in Figure 14 no significant dif-
ferences in the quality of reconstructed strain fields with specific load cases.

The recovered stress fields in Figures 9 and 10 assume that the mechanical
characteristics of the specimen, i.e. constitutive law and associated parame-
ters, are known a priori and retained during the growth process, as is usually
assumed in the growth modeling literature. Although this hypothesis can be
justified in a number of relevant physiological processes and diseases, growth
of pathological tissues (e.g. malignant tumors) may induce both residual
stresses and tissue stiffness heterogeneity. This is clearly a limitation of our
work. In this context, the proposed mathematical approach can be comple-
mented with elastography inverse formulations [57-60] to get both stiffness
and residual stress maps. This issue will be investigated in future work. Nev-
ertheless, as pointed out before, the present inverse approach is independent
from the origin of the residual stresses. Therefore, this framework can be
applied beyond growth problems in which this limitation does not hold to
recover, for instance, active stress fields present in tissues as a consequence
of cells” activity, or the active component of engineering materials (e.g. elec-
troactive, liquid crystal elastomers,...).
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Ns=9
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Ns=1

Figure 12: Components of the logarithmic strain tensor in the loaded configuration pre-
sented for the first load case (see Figure 6d). Different load cases, and hence different
number of stacks (Ns) of noisy input displacement data (high noise level) were used for
reconstruction. Load case 1 was used for Ns=1; load cases 1, 4, 13 and 16 were used for
Ns=4; load cases 1, 3, 4, 9, 11, 12, 13, 15 and 16 were used for Ns=9; all load cases were
used for Ns=16 (see Figure 6d). The first row is the ground truth solution, shown for
comparison purposes.

5. Conclusion

In this study, we developed and introduced a novel inverse approach for
quantifying complex residual stress patterns within a nonlinear continuum
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Figure 13: Components of the logarithmic strain tensor in the loaded configuration pre-
sented for the first load case (see Figure 6d). Different load cases, and different number of
stacks (Ns) of noisy input displacement data (low noise level) were used for reconstruction.
Load case 1 was used for Ns=1; load cases 1, 4, 13 and 16 were used for Ns=4; load cases
1,3,4,9, 11, 12, 13, 15 and 16 were used for Ns=9; all load cases were used for Ns=16 (see
Figure 6d). The first row is the ground truth solution, shown for comparison purposes.

framework. The methodology demonstrated the feasibility of recovering these
stresses using an externally loaded configuration, leveraging the distinct dis-
placement fields arising from material nonlinearity when the reference con-
figuration is prestressed as opposed to stress-free. Notably, the approach is
limited to solids that show a nonlinear constitutive behavior, typically found

29



5 T 3 T
I Ns=1 I Ns=1
[ Ns=4 [ Ns=4
4 [Ns=9 25 INs=9 |
B Ns=16 B Ns=16
2 4
X3 =
= m 1.5
= =
M 2 1 &
1
1 0.5
0 L L O Il
5 10 15 5 10 15
Load case Load case
(@) (b)

Figure 14: Errors of the recovered elastic strain fields from noisy the displacement fields
versus the ground truth solution, computed using recovered strain fields in Eq. (37) instead
of noisy fields, for the different stacks (and corresponding load cases) used as input data
for reconstruction. (a) High level of noise. (b) Low level of noise.

in biological materials, and the accuracy of the reconstructed stress fields
may depend on the characteristics of the nonlinear constitutive law, an as-
pect that will be investigated in future work. Moreover, model parameters
of the selected constitutive law (assumed as homogeneous) have to be cali-
brated a priori. However, the proposed methodology may be combined with
elastography inverse formulations to get both residual stress and stiffness
distributions, which may have potential interest in prestressed heterogeneous
tissues.

The proposed approach relies on input experimental data and leverages
external loads and domain displacement fields obtained from biaxial test-
ing. However, the formulation can be readily adapted to accommodate other
loading conditions. While this study was conducted in a theoretical context
using synthetically generated data instead of experimental measurements,
the required data can be experimentally acquired through mechanical test-
ing combined with digital image correlation (DIC) methodologies.

Furthermore, the study demonstrated significant improvements in the
recovery of variables when the data space was expanded by incorporating
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multiple load cases and corresponding data stacks into the reconstruction al-
gorithm. This observation is similar to the general trend observed in machine
learning techniques, where increasing the diversity of input data enhances so-
lution accuracy.

While the study focused on recovering residual stresses in tissues, the
framework is versatile and can be extended to explore active stresses in cells
or tissues, engineered active materials, and the reconstruction of pre-stresses
in various applications across industry and biology.
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