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Abstract 

We use the Fredholm alternative to derive a Mel’nikov vector for perturbations of N-dimensional maps with homoclinic 
connections. If the unperturbed mapping is integrable, this vector assumes a simple form, which we use to determine 
conditions for transversal and tangential intersection between the invariant manifolds in a four-dimensional map of the 
McMillan type. We also discuss conditions for non-transversal intersection which accurately predict the crossing of invariant 
manifolds from one part of 4-D space into another. 

1. Introduction 

It is well-known that the Mel’nikov function (or integral) has played an important role in determining 
approximately the onset of chaos via homo- (or hetero-)clinic tangencies in periodically perturbed two-dimen- 
sional flows (see Refs. [1,2], and references therein). However, despite a number of interesting results [2-41, the 
extensions of Mel’nikov’s theory to perturbations of higher dimensional systems was restricted for a long time 
to specific examples and did not offer convenient tools to treat the more general case. 

One of the reasons for this limitation has been the fact that Mel’nikov’s approach is primarily geometrical 
and relies heavily on the particular features of two-dimensional Poincare maps. As soon as one considers the 
higher dimensional case, serious difficulties arise with defining distances between invariant manifolds and 
conditions under which these manifolds intersect. 

In a recent paper [5], Chow and Yamashita demonstrated how to avoid these difficulties altogether, by 
formulating the problem in terms of the existence of bounded solutions of a system of N linear equations. In 
particular, using techniques developed earlier in Refs. [6] and [7], they applied the Fredholm alternative to the 
variational equations about the (known) separatrix solution of the unperturbed problem and derived a Mel’nikov 
vector yielding explicit conditions for the existence of homo- (or hetero-lclinic orbits of the perturbed system. 

In this Letter, we apply Chow and Yamashita’s approach and derive a Mel’nikov vector for perturbations of 
N-dimensional mappings, 

X n+l =F(x,) = l G(x,), (1) 
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n = 0, 1, 2,. . . , with F, G: [WN + RN, which for E = 0 possess a known homo- (or hetero-)clinic orbit. In the 

N = 2 case, our result coincides with the Mel’nikov function of a two-dimensional mapping [B], obtained by 

geometric arguments. 
As demonstrated in Ref. [5], if the E = 0 case is Hamiltonian, the Mel’nikov vector assumes a more 

convenient form, since its components are related to the gradients of the m integrals of the N (= 2m)- 
dimensional unperturbed problem. Here, we apply this theory to perturbations of the four-dimensional 

symplectic mapping 

I -U,+2xr”/(X,z+Y,2+1)\ 

F(xn) = I 
xn 

- ll, + 2Ky,/( x,’ + y,’ + 1) ’ 

Y” I 

(2) 

with x, =(x,, u,, y,, un). This map is of the McMillan type [B] and is known to be integrable [9] with analytic 

invariants 

z,=X,2+U~+y,2+0,2+(X,2+ynZ)(U~+Un2)-2K(x,u,+y,u,), (3a) 

I2 = X&J, - y,u, . (3b) 

It has physical significance in that it yields the static envelope solutions of the Ablowitz-Ladik integrable 

discretization of the nonlinear Schrodinger equation [lo]. 
For K > 1, the origin is a saddle point, with two-dimensional stable and unstable manifolds, on which the 

solution x:‘)(s) of (1) with E = 0 is known explicitly, as a function of s E [w2. We define a Mel’nikov vector, 

M(s), with components 

Mi( s) = i &! lG( x;“( s)), i= 1,2, 
n= --5o 

where 4:’ is the transpose of the ith bounded solution of the adjoint (linear) variational problem about x!,‘). 
Now, if for some s = s * , it happens that 

M(s*) =o, (5a) 

this offers a necessary condition for the existence of bounded solutions for all it, hence homoclinic orbits of the 
perturbed map (1). Furthermore, if in addition to (Sa) [4] 

det DM(s*) #O (5b) 

(D&f being the Jacobian of M) these orbits would correspond to transversal intersections of the invariant 
manifolds and the occurrence of chaos near the saddle point at 0. 

Applying this criterion to the map (1) with F given by (2) and 

we first show, for 6,, 6, small, that there exist s = s * , for many yl, y2 values, such that (5) holds and 
transversal intersections occur. We then demonstrate how, for certain (ri, Si), i = 1, 2, one can satisfy (5a), 
det DM(s * ) = 0 and an additional non-degeneracy criterion on the partial derivatives of M to obtain 

conditions for tangency between the invariant manifolds of the saddle point. 
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Interestingly enough, in the case of our example (6), we find that such conditions of non-transversal 
intersections can only be satisfied at points where M,(s; 1 = 0, M,(s; > = 01, with s; # s;. Still, we obtain 

predictions for the invariant manifolds crossing from one large region of phase space into another, which agree 
well with numerical computations, for yl,Z < 0.1 and a,,, < 0.05 (E = 1). 

2. The Mel’nikov vector for maps 

Consider an N-dimensional mapping of the form (11, which possesses, for E = 0, a saddle point at 0 with 
homoclinic connection, i.e. with orbits 

XIp’( s) + 0, n+ fX, (7) 

parametrized by an m-dimensional variable s E [w”, m <N. Assume for simplicity that 0 remains a saddle 
point, for E # 0, as well ( I E -=K 11. We want to derive conditions for the perturbed system to possess such I 
bounded orbits. 

Let us consider the variational problem about this homoclinic orbit, (71, of the unperturbed system 

4 n+ 1 =QAl~ D, = DF( x;“), (8) 

D, being the Jacobian of F, q, E RN, and introduce the adjoint variational equation 

till+1 =&On-‘, (9) 

where the 4, are N-dimensional row vectors. 

The fundamental solution matrix Q, (8,) of Eq. (8) (Eq. (9)) is an invertible matrix whose columns (rows) 

are linearly independent solutions of the variational (adjoin0 equations 

Q n+, =D,,Q,, din+, =&K’. 
Note that there exists a simple relation between these fundamental solutions, 

(10) 

&+,Qn+, = o,,Q, = Q,Q, = const. (11) 

Now, consider a solution X, of the perturbed system and assume that it can be expanded as a power series in E, 

X =x(O) + EXC) + E%$) + . . . . n n (12) 

We then obtain from (12) and (11, to first order in E, the variational equation about this solution, 

x;ll =D,x;‘+G(xjp’), (13) 

cf. (8). According to the ideas developed in Ref. [5] (see also Refs. [11,12]), a necessary condition that xi’) (and 
hence X, to B(E)) remain bounded, for all integers n, can be expressed by the Fredholm alternative as follows: 

Let 4, be a bounded solution of the adjoint variational system (9) and multiply Eq. (13) by @,,+ r, summing 

over all n, to obtain 

i (~n+1~~‘!1--~+1Dn~(,l’)= : %+,+:o’(s)). 
n= --m n= --oc 

It is clear from (14) that, if for some s = s * , 
10 

c 4,+++:“‘(s*)) =O, 
a= --co 

(14) 

(15) 

this provides a necessary condition for xc’ to be bounded for all n, as it implies that the sum on the 1.h.s of (14) 
converges to 

e (c,+,x% -G,x:1’) =O, (15’) 
n= -m 
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cf. (9). On the other hand, if the A$) are bounded, the series (15’) must converge, since the 4, in general vanish 
exponentially, as n -+ L- w (see also Section 3, below). 

Let us now assume that the separatrix solution xi’)(s) is parametrized by s E Iw”, cf. (7). We may, therefore, 
use (15) to define a Mel’n~ov vector, M(s), with components 

Mi(s) = i Q;$G(xjp’(s)), i=l,2 in, ,.-., (16) 

where m is the dimension of the bounded subspace of solutions of Eqs. (9) and (8). Thus, by analogy with the 
Mel’nikov vector for flows, we propose, as a necessary condition for the transversal intersection of invariant 
manifolds, the existence of simple zeros of M(s), i.e. s = s * values, where 

A+*> = 0, i=1,2 ,“*, m, (17) 

with [4] 

det DM(s*) #O. (18) 

If, on the other hand, condition (18) is replaced by an equality and an additional condition on the derivatives of 
M holds [5] (see below), we would expect (171, (18) to imply the occurrence of homoclinic tangencies which is 
an impo~ant precursor of the onset of chaos, near the saddle point at 0. 

We remark that, in the two-dimensional example studied in Ref. f81, the Mel’nikov function (16) (with m = 1 
and s E IR) is identical to the one obtained by (completely different) geometrical arguments. 

3. Invariant manifold intersections in a four-dimensional map 

Let us now apply the above criterion to a four-dimensional (4-D) map (11, with F, G given by (2) and (3). 
Note that the unperturbed (E = 0) map is symplectic and possesses two analytic integrals given by (3). For 
K > 1, the origin is a saddle point with two-dimensional stable and unstable manifolds, which join smoothly, at 
E = 0. On these manifolds, the exact homoclinic solution x(“(s), cf. (71, of the unperturbed equations is 

’ u( 0) sech( nw + t) ’ 

~~)( s) = xF’( t, e> = 
u(O) sech[(n- l)w+t] 

b(6) sech(nw+ t) ’ 

(b(B) sech[(n- l)w+t] 

(1% 

with t, 0 real arbitrary parameters and 

a = sinh w cos 0, b=sinh w sin 8, w = cash-” K. (19’) 

Now, from the knowledge of (19>, we can obtain immediately a solution of the variational equation (8) by 
differentiating (19) with respect to t, 

qP= 
ax;O’( t, 0) 

at . (20) 

Using now Eqs. (8)-(ll), we easily find one (bounded) solution of the adjoint equations, as the row vector 
orthogonal to (20), 

@‘= (-uS,_,T,_,, aS,T,, -b&_,T,_,, b&T,), 

where 

5, = sech( nw + t) , T, = tanh( IZW + t) . 

(21) 

(22) 
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It is easy to check that, as in the theory for flows [5], here also, (21) is equal to the gradient of one of the 
integrals of the E = 0 system: $” = VZ,(X~~)). 

More generally, let us show that the gradient of an integral yields a solution of the adjoint variational 

equations. Indeed, for E = 0 one has 

ari( xn> 
-=VZi(xn)=VI~(xn+~)= aF n ax n, 

ax, 
ari(F(xn)),(x ) = afi(xn+l)D 

n+l 

(23) 

cf. (8). We see, therefore, from (23), that 

#i)=vzi(x,), n i= 1,2 ,...) nl, (24) 

satisfies (9) and, hence, due to the independence and boundedness of the integrals, different integrals provide 
independent solutions of the adjoint problem and (24) gives all bounded solutions of the adjoint equations. Thus, 
we determine the second bounded solution of Eq. (9), using the second integral of the unperturbed system, (3b), 

Qi2’= V&(xIp)) = (bS,_,, -bS,, -as,_1, US,), (25) 
cf. (19), (22). 

Substituting now (21), (25) and (6) into our formula (16), we find the two components of the Mel’nikov 

vector of our problem, 

M,(t, 0)= - 2 S,T,[(a*y,+b*y,)S,+(a26,+b~~,)S,_,], (26a) 
n= --a 

M*(t, e) =a6 5 [S,2(Y1 - 72) +&L01 - 62)l. (26b) 

These M,(t, 0) are actually periodic in t (with the same period w) and can be expressed in terms of Jacobi 
elliptic functions, using formulas given in Ref. [8]. They are also T-periodic in 8, as is evident from (19’). 

It is quite convenient to evaluate numerically these (rapidly convergent) sums (26), plot them in 3-D space as 
functions of t and 8 and locate graphically the desired points s * = (t * , 8 * > at which 

M,(t*, e*) =Mz(18, e*) =o, (27) 

by looking at intersection points between the nodelines of M, and M, in the s-plane. 

In Fig. 1, we plot the two components of the Mel’nikov vector, as well as their nodelines, showing the 
existence of two points, where (27) holds. Hence, since at these points 

aM,(s* 1 
=# 0, 

aMAS*) 2. 

at ae ’ (28) 

we conclude that (at these parameter values) condition (18) is satisfied and the invariant manifolds of the saddle 
point at 0 intersect transversely. We would therefore expect that these points correspond to isolated homoclinic 
orbits of the system. 

Let us now concentrate on the case of tangential intersection of W” and Ws, where we have according to 
Ref. [5], the following sufficient conditions, 

Mi(si’) =a,Mi(s;) =O, i= 1,2, (29) 

for some sit = (t: , 8,* ) E R2 on the manifolds, and 

wf*(s;) a,M,(s;) apw ST > qA(si > 
a;M,(s;) $‘M2(s;) a,“,M,(s;) a&Mz(s;) =47 

I 
(30) 
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a 0.1 Ml 
1 

b 1.0 M2 
1 

-l.oA 

C 1.0 _BjTT. . 

\ 

M,=O 

: ” 

-. .i... . ...). I 
\ 

1 M,=O 

0.0 \‘,/LJ 
0.0 1.0 

Fig. 1. The bounded components of the Mel’nikov vector (a) M,(t, 0), (b) M,(t, 0) and (c) their nodelines in the (t/w, o/r), intersecting 

at two points. Here, 6, = 0.03, 6, = 0.01, = 0.06, = -0.06. y1 y? 
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with CL = yi, yz, a,, 6,. Note that in Ref. [5] s; = s; is required. Here, however, we do not restrict ourselves 
to this constraint and allow the components of M to satisfy the tangency conditions (29) and (30) at distinct 

points on the manifolds. 
For the Mel’nikov function (26), Eqs. (27) have two classes of solutions those that hold on isolated 

homoclinic points for arbitrary 8, and those that annihilate Mi and a,M, identically along entire orbits for 
certain 8. The latter do not satisfy (30) and have to be discarded. The first class defines certain surfaces in 

parameter space (rl, yz, a,, 6,) as follows [13]. From M, = d,M, = 0 we find [13] 

yj= *&c(t;), i= 1,2, (31a) 

while M2 = a, M, = 0 leads to 

rl-Yz=(Q%)di(fl)~ i= 1,2. (3lb) 

A section at constant Si is displayed in Fig. 2a. The constants c and di are given in terms of periodic functions 

of S, and T, evaluated at the points of intersection t,* which are determined uniquely (mod w) from the 
tangency conditions. It is interesting that the t; and t; values we find are distinct, meaning that a true 

homoclinic tangency, at a single point s *, as defined in Ref. [5], does not exist in our example. Still, 
non-transversal intersections are predicted by the above results at parameter values which correspond to the 

intersections of the surfaces (31) in yi, 6, space (see points A, B in Fig. 2al. 
To study the validity of these predictions we have developed a numerical method which gives parameter 

values for homoclinic tangency accurately and independently from the Mel’nikov approach: We compute, for 
E # 0, the eigenvectors of the linearized equations at 0, approximate W” and W” by their corresponding planar 

eigenspaces and place on a parallelogram, defined by the eigenvectors of W” with positive coordinates, a grid 

of 20 x 20 points very close to 0. We then “map out” this W” in four dimensions, by iterating these 400 points 
forward, a few times, checking whether any of them cross the corresponding positive part of W”, upon their 

return near 0. If Ws and W” are to intersect at some points in [w4 they will also do so in the neighborhoud of 
the origin. Thus, it is sufficient to check whether W” intersects the planar approximation of W” near 0. 

This can be studied by observing whether, after a number of iterations, some points on W” have projections 

in the x, < 0 and/or y,< 0 subspaces. For fixed a,, C& this 

I-IV, in Fig. 2b, as follows. 
divides the y,, y2 plane in four regions, labeled 

b 

Fig. 2. (a) Vertical and horizontal lines, determining the central shaded parallelogram where M, < 0 (cf. (31a)l and diagonal lines (forming 
a very thin band in this figure, cf. (31b)l for 6, = 0.03, 6, = 0.01. Non-transversal intersections in 4-D are predicted at the nearest 
intersections of these lines to y1 = y2 = 0, i.e at the points A, B. (bl Numerical experiments show that the actual location of these points is 
at A’, B’. Regions I, II, III and IV are as described in the text. 
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Region I. No intersections, all W” points are trapped in the x, > 0, y, > 0 quadrant (see Fig. 3a). 

Region II. Intersections in the x,--u, projections, trapping in the y, > 0 subspace (see Fig. 3bl. 
Region III. Intersections in the y,,-U, projections, trapping in the X, > 0 subspace (see Fig. 3~). 
Region IV. Intersections in both projections. Parts of W” extend over all 4-D space (see Fig. 3d). 
Thus, it becomes clear from these results that tangential intersections in 4-D are expected at parameter values 

where the above regions I-IV meet, marked by A’ and B’ in Fig. 2. Taking, for example, 6, = 0.03, a2 = 0.01, 

one of these points is A = (-y y”, yym) = ( - 0.0588, - 0.0447). For the same case, our Mel’nikov theory gives 

A = ( y;“, yih> = ( - 0.0549, - 0.0403). 
In a similar way, we determine for several choices of 6, and S,, 7:““’ values at which W” intersects 

non-transversally W”, and list them in Table 1, together with the corresponding theoretical values r!“, predicted 

by the Mel’nikov vector analysis. 

Note that the agreement between numerical and analytical results is quite good for the y, < 0 points A and A. 
By comparison, the corresponding agreement between the yi > 0 points B and B’ becomes increasingly poorer, 
the more the Si values differ from each other (see Table 1). This might be explained by the fact that, for y, > 0, 

the x,, y, terms in (6) add “constructively” to the corresponding u,, L:, terms (since S, > a,), whereas, for 
yi < 0, the cumulative magnitude of these perturbations is considerably smaller, which may account for the 

better agreement between theory and practice, in that case. 

4. Discussion 

Using the Fredholm alternative for the existence of bounded solutions of a linear variational problem, we 

have derived in this paper, a Mel’nikov vector for e-perturbations of N-dimensional maps, which possess, for 

E = 0, a smooth homoclinic connection. Our work is analogous that of Chow and Yamashita [5] for periodic 
perturbation of N-dimensional flows. 

In case the unperturbed N (= 2m)-dimensional map has m integrals, 1,(x,) = const, we showed that the 
Mel’nikov vector M(s) has m components given in terms of the solutions Gr’ = VZ,(xjp’(s)) of the adjoint 
equations of the variational problem about the separatrix solution xjp’(s), s E [w”, of the E = 0 system. 

Thus, one can write down necessary conditions for transversal intersection between the corresponding 

invariant manifolds of the perturbed (E Z 0) system, by requiring that the Mel’nikov vector possess simple 
zeros, i.e. 

M(s’) =o, det DM(s*) #O (32) 
at some points s * E R”. Furthermore, when the second relation in (32) becomes an equality and some 
additional conditions on the derivatives of M hold, one obtains conditions for homoclinic tangency between 
these manifolds. 

Applying these results to an example of a 4-D symplectic map, perturbed by conservative and dissipative 
terms with coefficients y, and 6, (i = 1, 2) respectively, we first showed that when (32) holds, transversal 
intersections of the 2-D invariant manifolds (W”, W “1 of a saddle point are indeed observed. As such, we 
interpreted the crossing of W” points (through Ws) into the X, < 0 and/or y, < 0 region of the 

(X”, x,- 1, Y,, Y,- 1) space. 
We have also studied the occurrence of non-transversal intersections in our example, by fixing S,, 6, and 

looking for y,, yz values such that M,(s) and M,(s) satisfy tangency conditions at s = s * points at which 
they vanish. We found that, even though we could not satisfy such conditions at the same s * = (t * , 0 * ), the 
requirement that 

M;(s,*) =O, 
aMj 
T( s{*) = 0, i= 1,2, (33) 
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a 
2-c I > 

I . . . . 

-2-C 

), 

,.’ 1 

I I 
b 

,_.. ,,-’ ; .._.............. ;,’ 

_;’ 
_;’ 

_,-’ 
_I. 

-2.0’ 
Fig. 3. Forward iterations of 400 points lying within a small parallelogram formed by the eigenvectors with positive components of the 

planar approximation of W” near the origin for y,, y2 values: (a) in region I, (b) in region II, (c) in region III, (d) in region IV. Circles 

indicate hyperbolic fixed points. Here also 6, = 0.03, 6, = 0.01. 
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Fig. 3 (continued). 
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Table 1 

Parameter values for non-transversal intersection at a2 = 0.01 (w = 1.5) 

6, r;“” Y2nUrn 

0.01 - 0.0392 - 0.0392 

0.01 0.0401 0.0401 

0.02 - 0.0491 - 0.0421 

0.02 0.0509 0.0579 

0.03 - 0.0588 - 0.0447 

0.03 0.0608 0.0750 

0.04 - 0.0684 - 0.0473 

0.04 0.0703 0.0916 

0.05 - 0.0779 - 0.0497 

0.05 0.0794 0.1079 

Yl” Y:” 

- 0.0403 - 0.0403 

0.0403 0.0403 

- 0.0476 - 0.0403 

0.0329 0.0403 

- 0.0549 - 0.0403 

0.0256 0.0403 

- 0.0622 - 0.0403 

0.0183 0.0403 

- 0.0695 - 0.0403 

0.0110 0.0403 

at sl* #s; and the rank condition (30), give 7;” values at which non-transversal intersections in 4-D are 

expected. Such intersections are indeed numerically observed, at y,““” which are in satisfactory agreement with 

the theoretical values, especially near the symmetric case S, = 6,. 
Clearly, a lot remains to be done: Does the fact that s; # s; at non-transversality imply that no homoclinic 

tangency in the usual sense occurs in our example? Is this a generic result or does it depend on the particular 

type of perturbation we have chosen? 
Similarly, what about transversal intersections in regions II and III where the invariant manifolds do not 

extend in the full 4-D space? Is the dynamics in those regions (transient) chaotic, and how do the properties of 
the orbits compare with those of region IV in which homoclinic orbits seem to visit all space? These and other 
related questions are currently under investigation and results are expected to appear in a future publication. 
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