Alain Goriely

The Mathematics
and Mechanics of Biological
Growth

@ Springer



Alain Goriely
Department of Mathematics
University of Oxford

Oxford

UK

ISSN 0939-6047 ISSN 2196-9973 (electronic)
Interdisciplinary Applied Mathematics

ISBN 978-0-387-87709-9 ISBN 978-0-387-87710-5 (eBook)

DOI 10.1007/978-0-387-87710-5
Library of Congress Control Number: 2016963741
Mathematics Subject Classification (2010): 74L15, 74B20, 92C10, 92Bxx, 92C30, 92C50, 92C80

© Springer Science+Business Media LLC 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Science+Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.






This book is dedicated to the 3Z:
Z¢bulon, Zakkai, and Zéphyr.
Not as an acknowledgement of their patience or help,
as they have none and gave me little,
but for the daily joy and chaos that they create
and for the fabulous examples of growth processes
that they generated over the last seventeen years.
My interest in growth conveniently coincided

with their birth and childhood.



Preface

To the nature lover, there is a distinct feeling of awe and beauty when observing the
gradual development of a child, the slow growth of trees, the fine structure of a
seashell, or the opening of a flower. Throughout human cultures and civilizations,
philosophers, artists, and scientists have marveled and pondered at the cycle of life,
the changes from an embryonic form to a newborn, the maturation of the newborn,
and the constant physiological renewal of the adult. All these processes can be
summarized by a single concept: growth. Growth provides an organism with the
ability to adapt and control its environment through its life and through time.
Growth is at the very core definition of life itself.

The problem of growth has been traditionally central to all aspects of biological
research but of marginal interest to physicists, engineers, and mathematicians.
However, in the last thirty years with the rise of medical bioengineering,
biophysics, and mathematical biology, the problematic of describing and under-
standing growth quantitatively has become a main topic of multidisciplinary
research.

Writing a book in an active field, spanning centuries of knowledge and covering
multiple disciplines, is a risky proposition. The idea for this monograph came to me
more than ten years ago when I realized that the general topics of mathematics of
growth was becoming a central theme of research for many scientists in different
communities. There was a clear need to bridge different concepts and ideas origi-
nating from multiple communities and, in particular, create a common language to
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X Preface

describe phenomena appearing in different scientific disciplines. This monograph is
an attempt in this direction.

Following my own interests and limited abilities, there is a strong bias in the
choice of topics presented in this monograph.

First, most of the descriptions are at the continuum level, essentially from tissues
to organs with very little discussion on cellular processes responsible for growth.
Whereas much is known at the cellular level, our understanding of transduction
mechanisms, linking cellular processes to tissue and organ growth, is still in
infancy.

Second, the emphasis is on physical and mechanical aspects of growth at the
level of organs and organisms but not at the population level. The mathematics of
evolving populations of cells or individuals, and their coupling with chemical fields
is well developed. It can be found in classic textbooks of mathematical biology and
will not be repeated here.

Third, the theory is developed around modern concepts of solid mechanics and
illustrated through the use of reduced simplified models that can be analyzed by the
methods of applied mathematics. Unavoidably, the concepts may be advanced but
the models are often simple. The hope is that these models provide some insight
into the mechanisms governing growth and the interplay between growth,
mechanics, and geometry. More realistic models would typically require both an
extensive discussion of the underlying biological system and extensive computa-
tional analyses. I leave these tasks to the experts in these different fields.

Fourth, the emphasis is on the consequences of growth rather than on its origin.
The discussion is mostly restricted to the analysis of tissue and organs made out of a
single elastic component rather than the more general theory of mixtures that takes
into account the coupling between fluids and various tissue components. These
advanced theories for growth and remodeling have been used to develop realistic
models but cannot be easily analyzed mathematically. They also require a more
general computational framework that is still in development. My general philos-
ophy is that little progress can be made for models with multiple components unless
we have a thorough understanding of the simpler problems studied here.

Fifth, whereas I try to provide general introductions to different topics and key
references to many authors, most of the topics presented here have come about
through my own research projects. I have worked on these with various collabo-
rators over the last twenty years. Therefore, this monograph is not an exhaustive
review of the field as much as my personal views on the subject. I do not believe
that it is the only approach or even that it is superior to other points of view. I would
like to encourage other researchers to provide alternative, complementary, or
contradictory approaches as it will only enrich the debate and help develop a
general theory of growth. While I have tried to be thorough in citing relevant works
in the literature, I have undoubtedly missed important references and, I can only
apologize to the colleagues that I have offended in the process.

This book is designed to be at the quadruple interface of mathematics, biology,
physics, and mechanics. Life at the interface is particularly rich and exciting as it
takes advantage of ideas, concepts, and methods from different fields. It is also
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particularly dangerous as it is the ideal ecological zone for highly specialized
predators. I expect that biologists will find the biological modeling over-simplistic
and focussing on questions of little interest to them. I believe that many mathe-
maticians will find the mathematical description too informal and lacking the rigor
expected in various well-established disciplines ranging from partial differential
equations to differential geometry. Some engineers may lament at the lack of
finite-element simulations and detailed mechanical measurements. And, I fully
expect that many physicists will view the treatment of mechanics as being too
technical and unnecessarily complicated. These criticisms are all valid. It is the
curse of interdisciplinarity to always fall short of the expectations required by
disciplinary purity. But, it is only when these opprobriums will be bestowed on me
that I will know that I have managed to reach different communities and that I may
have attained some measure of success.

A Reader’s Map

This book was conceived to be read at different levels, depending on the reader’s
interests and background. The difficulty is that a mathematical and mechanical
theory of growth naturally combines aspects of biology, mathematics, and
mechanics. The bio-mechanician with a good grip of solid mechanics may not
always be familiar with some methods of applied mathematics. Similarly, many
applied mathematicians and physicists, while often well trained in fluid mechanics,
are not typically exposed to advanced concepts of solid mechanics. For the bio-
logically trained but mathematically inclined readers, mathematics and mechanics
may be appealing but may present technical difficulties. Accordingly, topics are
presented in order of conceptual and mathematical difficulties.

Inspired by the structure of the excellent textbook “Nonlinear Dynamics and
Chaos” by Steven Strogatz, I organized this monograph according to the dimen-
sionality of the problem, starting in dimension one before considering problems in
dimension two and only then presenting the general theory in three dimensions.
Indeed, the coupling of growth and mechanics can be illustrated in simplified
geometries where the fundamental concepts can be easily understood. Once these
concepts are understood, they are progressively generalized.

Part T presents a general introduction to growth, hopefully accessible to all
readers. It presents basic aspects and classification of growth processes and, more or
less, use historical developments and abundant examples from biology and phys-
iology to introduce key concepts relating biological growth to physical cues.

Part IT was specifically developed for this monograph, both to introduce basic
mechanical ideas such as elasticity, viscoelasticity, and plasticity; but also to
illustrate the interplay between growth processes and mechanics. In the first chapter,
I discuss the simplest instances of growth by restricting deformations along a line.
In the process of writing this book, I realized that there was no general theory of
growth for filamentary structures. With Derek Moulton and Thomas Lessinnes,
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we filled this gap and showed how to generalize the theory of elastic rods to include
the effects of growth and remodeling. These ideas are used to model many inter-
esting systems, mostly taken from the world of plants.

Part IIT further generalizes these concepts in simple two-dimensional geometries
with applications to accretive growth problems such as seashells and microbial
systems exhibiting tip growth. Most of the discussion of two-dimensional elastic
surfaces is restricted to axisymmetric membranes and shells. The general problem
of deriving a general theory of morphoelastic shells would require a few more
chapters and only a short introduction to the general problem is given.

Part IV presents a general theory of growth for three-dimensional bodies based
on the twin concept of evolving reference configuration and the multiplicative
decomposition of the deformation gradient. This part starts with a brief description
of the classic theory of nonlinear elasticity so that readers not versed in the language
of large deformations mechanics can learn the basic tools. An extensive discussion
on the kinematics of growth viewed as evolving configurations is presented. It is
followed by a general discussion on growth laws, dynamics, and stability. The two
last chapters are devoted to detailed examples and applications in spherical and
cylindrical geometries.

Rather than providing a final conclusion to a field that is still blooming,
I conclude, in Part V, with a list of ten challenges. It is my hope that these
challenges will motivate other researchers and help move the field forward.

Oxford, UK Alain Goriely
2016
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