j3 A. Goriely. Investigation of Painlevé Property under Time Singularities Transformations. Journal of Mathematical Physics. 1992. 33.

DOI: 10.1063/1.529593

c5 A. Goriely. From weak to full Painlevé property via time singularities transformations. IN T. Bountis (Ed.) Chaotic Dynamics: Theory and Practice. Plenum Press. 1992.

DOI: 10.1007/978-1-4615-3464-8_10


c4 L. Brenig and A. Goriely. Quasi-Monomial Transformations and Decoupling of Systems of ODE’s. IN I. Antoniou and F.J. Lambert (Eds.) Solitons and Chaos. Research Reports in Physics. Springer Verlag. 1991.

DOI: 10.1007/978-3-642-84570-3_7

c3 A. Goriely. Acoustique, Atome, Energie, Ondes, Particules, Élémentaire, Radioactivitié. IN G. Pascal. Encyclopédie Bordas. Bordas. 1991.

c2 A. Goriely. An algorithmic Approach to Differential Equations. IN Equations Différentielles et Calcul Formel. proceedings (Strasbourg). 1991.


j2 A. Goriely and L. Brenig. Algebraic Degeneracy and Partial Integrability for Systems of Ordinary Differential Equation. Physics Letters A. 1990. 145, 5.

DOI: 10.1016/0375-9601(90)90358-U

c1 L. Brenig and A. Goriely. Quasi-Monomial Transformations and Integrability. IN R. Conte and N. Boccara. (Ed.) Partially Integrable Evolution Equations in Physics. Kluwer Academic Publisher. 1990.

DOI: 10.1007/978-94-009-0591-7_22


j1 L. Brenig and A. Goriely. Universal Canonical Forms for Time Continuous Dynamical Systems. Physical Review A. 1989. 40, 7.

DOI: 10.1103/PhysRevA.40.4119