j9 A. Goriely and M. Tabor. Nonlinear Dynamics of Filaments I: Dynamical Instabilities. Physica D: Nonlinear Phenomena. 1997. 105, 1-3.

DOI: 10.1016/S0167-2789(96)00290-4


j7 A. Goriely. Integrability, Partial Integrability and Nonintegrability for Systems of Ordinary Differential Equations. Journal of Mathematical Physics. 1996. 37.

DOI: 10.1063/1.531484


j6 A. Goriely. A simple solution to the nonlinear front problem. Physical Review Letters. 1995. 75.

DOI: 10.1103/PhysRevLett.75.2047


j5 T. Bountis, A. Goriely and M. Kolman. Mel’nikov vector for N-dimensional mappings. Physics Letters A. 1995. 206.

j4 A. Goriely and M. Tabor. The Singularity Analysis for Nearly Integrable Systems: Homoclinic Intersections and Local Multivaluedness. Physica D: Nonlinear Phenomena. 1995. 85, 1-2.

DOI: 10.1016/0167-2789(94)00137-F


c7 L. Brenig and A. Goriely. Painlevé analysis and normal forms theory. IN E.Tournier (Ed.) Computer Algebra and Differential Equations. Cambridge University Press. 1994.

c6 A. Goriely and M. Tabor. How to Compute the Melnikov vector? IN Proceedings of the International Symposium on Symbolic and Algebraic Computation ISSAC 1994. ACM Press.


j3 A. Goriely. Investigation of Painlevé Property under Time Singularities Transformations. Journal of Mathematical Physics. 1992. 33.

DOI: 10.1063/1.529593

c5 A. Goriely. From weak to full Painlevé property via time singularities transformations. IN T. Bountis (Ed.) Chaotic Dynamics: Theory and Practice. Plenum Press. 1992.

DOI: 10.1007/978-1-4615-3464-8_10


c4 L. Brenig and A. Goriely. Quasi-Monomial Transformations and Decoupling of Systems of ODE’s. IN I. Antoniou and F.J. Lambert (Eds.) Solitons and Chaos. Research Reports in Physics. Springer Verlag. 1991.

DOI: 10.1007/978-3-642-84570-3_7

c2 A. Goriely. An algorithmic Approach to Differential Equations. IN Equations Différentielles et Calcul Formel. proceedings (Strasbourg). 1991.


j2 A. Goriely and L. Brenig. Algebraic Degeneracy and Partial Integrability for Systems of Ordinary Differential Equation. Physics Letters A. 1990. 145, 5.

DOI: 10.1016/0375-9601(90)90358-U

c1 L. Brenig and A. Goriely. Quasi-Monomial Transformations and Integrability. IN R. Conte and N. Boccara. (Ed.) Partially Integrable Evolution Equations in Physics. Kluwer Academic Publisher. 1990.

DOI: 10.1007/978-94-009-0591-7_22


j1 L. Brenig and A. Goriely. Universal Canonical Forms for Time Continuous Dynamical Systems. Physical Review A. 1989. 40, 7.

DOI: 10.1103/PhysRevA.40.4119


Applied Mathematics: A Very Short Introduction, Oxford University Press (February 2018, 120 pages).
Find it on Amazon.
Read it together with the Youtube Playlist.

A.Goriely. Morphoelasticity: The Mathematics and Mechanics of Biological Growth. Springer-Verlag Interdisciplinary and Applied Mathematics. 2017 (651 Pages). Find it on Amazon.

Goriely, P. Hosoi, H. Dankowicz. Non-linear mechanics of biological structures. Special Issue of the International Journal of Nonlinear Mechanics. 2011. 46, 4.

M. Ben Amar, A. Goriely, M. Mueller (Eds.) New Trends in the Physics and Mechanics of Biological Systems: Lecture Notes of the Les Houches Summer School. Volume 92. Oxford University Press. 2011
Find it on Amazon.

A. Goriely. Integrability and Nonintegrability of Dynamical Systems. World Scientific. 2001 (436 pages).
Out of print, but you can grab one on Amazon for £375 (a bargain).