Publications

1997

j11 A. Goriely and M. Tabor. Nonlinear Dynamics of Filaments III: Instabilities of Helical Rods. Royal Society A: Mathematical, Physical and Engineering Sciences. 1997. 453, 1967.

DOI: 10.1098/rspa.1997.0138

j10 A. Goriely and M. Tabor. Nonlinear Dynamics of Filaments II: Nonlinear analysis. Physica D: Nonlinear Phenomena. 1997. 105, 1-3.

DOI: 10.1016/S0167-2789(97)83389-1

j9 A. Goriely and M. Tabor. Nonlinear Dynamics of Filaments I: Dynamical Instabilities. Physica D: Nonlinear Phenomena. 1997. 105, 1-3.

DOI: 10.1016/S0167-2789(96)00290-4

1996

j8 A. Goriely and M. Tabor. New amplitude equations for thin elastic rods. Physical Review Letters. 1996. 77. 17.

DOI: 10.1103/PhysRevLett.77.3537

j7 A. Goriely. Integrability, Partial Integrability and Nonintegrability for Systems of Ordinary Differential Equations. Journal of Mathematical Physics. 1996. 37.

DOI: 10.1063/1.531484

1995

j6 A. Goriely. A simple solution to the nonlinear front problem. Physical Review Letters. 1995. 75.

DOI: 10.1103/PhysRevLett.75.2047

 

j5 T. Bountis, A. Goriely and M. Kolman. Mel’nikov vector for N-dimensional mappings. Physics Letters A. 1995. 206.

j4 A. Goriely and M. Tabor. The Singularity Analysis for Nearly Integrable Systems: Homoclinic Intersections and Local Multivaluedness. Physica D: Nonlinear Phenomena. 1995. 85, 1-2.

DOI: 10.1016/0167-2789(94)00137-F

1994

c7 L. Brenig and A. Goriely. Painlevé analysis and normal forms theory. IN E.Tournier (Ed.) Computer Algebra and Differential Equations. Cambridge University Press. 1994.

c6 A. Goriely and M. Tabor. How to Compute the Melnikov vector? IN Proceedings of the International Symposium on Symbolic and Algebraic Computation ISSAC 1994. ACM Press.

1992

j3 A. Goriely. Investigation of Painlevé Property under Time Singularities Transformations. Journal of Mathematical Physics. 1992. 33.

DOI: 10.1063/1.529593

c5 A. Goriely. From weak to full Painlevé property via time singularities transformations. IN T. Bountis (Ed.) Chaotic Dynamics: Theory and Practice. Plenum Press. 1992.

DOI: 10.1007/978-1-4615-3464-8_10

1991

c4 L. Brenig and A. Goriely. Quasi-Monomial Transformations and Decoupling of Systems of ODE’s. IN I. Antoniou and F.J. Lambert (Eds.) Solitons and Chaos. Research Reports in Physics. Springer Verlag. 1991.

DOI: 10.1007/978-3-642-84570-3_7

c3 A. Goriely. Acoustique, Atome, Energie, Ondes, Particules, Élémentaire, Radioactivitié. IN G. Pascal. Encyclopédie Bordas. Bordas. 1991.

c2 A. Goriely. An algorithmic Approach to Differential Equations. IN Equations Différentielles et Calcul Formel. proceedings (Strasbourg). 1991.

1990

j2 A. Goriely and L. Brenig. Algebraic Degeneracy and Partial Integrability for Systems of Ordinary Differential Equation. Physics Letters A. 1990. 145, 5.

DOI: 10.1016/0375-9601(90)90358-U

c1 L. Brenig and A. Goriely. Quasi-Monomial Transformations and Integrability. IN R. Conte and N. Boccara. (Ed.) Partially Integrable Evolution Equations in Physics. Kluwer Academic Publisher. 1990.

DOI: 10.1007/978-94-009-0591-7_22

1989

j1 L. Brenig and A. Goriely. Universal Canonical Forms for Time Continuous Dynamical Systems. Physical Review A. 1989. 40, 7.

DOI: 10.1103/PhysRevA.40.4119